[1] |
Nielsen M A, Chuang I L. Quantum computation and quantum information [J]. Mathematical Structures in Computer Science,
|
20 |
02, 17(6): 1115.
|
[2] |
Su X Q, Guo G C. Quantum communication and quantum computation [J]. Chinese Journal of Quantum Electronics, 2004,
|
21 |
(6): 706-718.
|
|
苏晓琴, 郭光灿. 量子通信与量子计算[J]. 量子电子学报, 2004, 21(6): 706-718.
|
[3] |
Baumgratz T, Cramer M, Plenio M B. Quantifying coherence [J]. Physical Review Letters, 2014, 113(14): 140401.
|
[4] |
Streltsov A, Singh U, Dhar H S, et al. Measuring quantum coherence with entanglement [J]. Physical Review Letters, 2015,
|
11 |
5(2): 020403.
|
[5] |
Hu M L, Hu X, Wang J C, et al. Quantum coherence and geometric quantum discord [J]. Physics Reports, 2018, 762-764:
|
1- |
100.
|
[6] |
Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? [J]. Physical
|
|
Review, 1935, 47(10): 770-780.
|
[7] |
Rivas A, Huelga S F, Plenio M B. Entanglement and non-Markovianity of quantum evolutions [J]. Physical Review Letters,
|
20 |
10, 105(5): 050403.
|
[8] |
Franco R L, Bellomo B, Maniscalco S, et al. Dynamics of quantum correlations in two-qubit systems within non-Markovian
|
|
environments [J]. International Journal of Modern Physics B, 2013, 27(1-3): 1345053.
|
[9] |
Xu G F, Tong D M. Non-Markovian effect on the classical and quantum correlations [J]. Chinese Physics Letters, 2011, 28(6):
|
06 |
0305.
|
[10] |
Zhao X Y, Shu W F, Wu L A, et al. Fermionic stochastic Schr¨odinger equation and master equation: An open-system model
|
[J] |
Physical Review A, 2012, 86(3): 032116.
|
[11] |
Berrada K, Raffah B, Eleuch H. Quantum correlations and coherence in a driven two-qubit system under non-Markovian
|
|
dissipative effect [J]. Results in Physics, 2020, 17: 103083.
|
[12] |
Di´osi L, StrunzWT. The non-Markovian stochastic Schr¨odinger equation for open systems [J]. Physics Letters A, 1997, 235(6):
|
56 |
9-573.
|
[13] |
Di´osi L. Summary of discussion on the normal D-region [J]. Journal of Physics A-General Physics, 1998, 31(31): 9842-9845.
|
[14] |
Jing J, Zhao X Y, You J Q, et al. Time-local quantum-state-diffusion equation for multilevel quantum systems [J]. Physical
|
|
Review A, 2012, 85(4): 042106.
|
[15] |
Chen Y, You J Q, Yu T. Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach [J].
|
|
Physical Review A, 2014, 90(5): 052104.
|
[16] |
Jing J, Yu T, Lam C H, et al. Control relaxation via dephasing: A quantum-state-diffusion study [J]. Physical Review A, 2018,
|
97 |
: 012104.
|
[17] |
Dildar Hitjan, Arapat Ablimit, Bai H T, et al. Effect of non-Markovian environment on quantum teleportation via a two-qubit
|
|
Heisenberg XXZ spin chain [J]. Chinese Journal of Quantum Electronics, 2020, 37(6): 704-710.
|
|
迪丽达尔·海依提江, 阿拉帕提·阿不力米提, 白慧婷, 等. 非马尔科夫环境对海森堡XXZ 自旋链模型中量子隐形传态的
|
影响[J] |
量子电子学报, 2020, 37(6): 704-710.
|
[18] |
Qi X F, Gao T, Yan F L. Measuring coherence with entanglement concurrence [J]. Journal of Physics A: Mathematical and
|
|
Theoretical, 2017, 50(28): 285301.
|