[1] Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing [C]. IEEE International Conference on Computers, Systems and Signal Processing. Bangalore: IEEE Press, 1984: 175-179.[2] Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution [J]. Review of Modern Physics, 2009, 81(3):1301.[3] Townsend P D. Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibr e using wavelength division multiplexing[J]. Electronics Letters, 1997, 33(3):188 190.[4] Razavi M. Multiple Access Quantum Key Distribution Networks[J]. IEEE Transactions on Communications, 2012, 60(10):3071 3079.[5] Carpenter J, Xiong C, Collins M J, et al. Mode multiplexed single photon and classical channels in a few mode fiber[J]. Optics Express, 2013, 21(23):28794.[6] Zhang J, Liu Y X, Ozdemir S K, et al. Quantum internet using code division multiple access [J]. Scientific Reports, 2013, 3(7):2211.[7] Peters N A, Toliver P, Chapuran T E, et al. Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments [J]. New Journal of Physics, 2009, 11(5):045012.[8] Dynes J F, Tam W S, Plews A, et al. Ultra-high bandwidth quantum secured data transmission [J]. Scientific Reports, 2016, 6:35149.[9] WANG H, ZHOU Y Y, YU W. Performance Analysis of Wavelength Assignment Optimization Scheme for Hybrid Quantum-Classical Networks [J]. Chinese Journal of Quantum Electronics, 2020, 37(1): 43-49.王欢 周媛媛 虞味. 量子-经典混合光网络波长分配优化方案性能分析 [J]. 量子电子学报, 2020, 37(1): 43-49.[10] Patel K A, Dynes J F, Choi I, et al. Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber [J]. Physical Review X, 2012, 2(4): 041010.[11] Kawahara H, Medhipour A, Inoue K. Effect of spontaneous Raman scattering on quantum channel wavelength-multiplexed with classical channel [J]. Optics Communications, 2011, 284(2):691-696.[12] Hill K O, Johnson D C, Kawasaki B S, et al. cw three‐wave mixing in single‐mode optical fibers [J]. Journal of Applied Physics, 1978, 49(10):5098-5106.[13] Single-mode optical fibers for telecommunication-Part 1: Characteristics of a dispersion unshifted single-mode optical fiber: GB/T 9771.1-2008[S]. Beijing: China Standard Press,2009.[14] Single-mode optical fibers for telecommunication-Part 4: Characteristics of a dispersion-shifted single-mode optical fiber: GB/T 9771.4-2008[S]. Beijing: China Standard Press,2009.[15] Single-mode optical fibers for telecommunication-Part 2: Characteristics of a cut-off wavelength shifted single-mode optical fiber: GB/T 9771.2-2008[S]. Beijing: China Standard Press,2009.[16] Single-mode optical fibers for telecommunication-Part 5: Characteristics of a non-zero dispersion shifted single-mode optical fiber: GB/T 9771.5-2008[S]. Beijing: China Standard Press,2009.[17] Single-mode optical fibers for telecommunication-Part 6: Characteristics of a fiber with non-zero dispersion for wideband optical transport: GB/T 9771.6-2008[S]. Beijing: China Standard Press,2009.[18] Ma X, Qi B, Zhao Y, et al. Practical decoy state for quantum key distribution [J]. Physical Review A, 2005, 72:012326.[19] Zhang Z, Zhao Q, Razavi M, et al. Improved key-rate bounds for practical decoy-state quantum-key-distribution systems[J]. Physical Review A, 2017, 95:012333. |