量子电子学报 ›› 2023, Vol. 40 ›› Issue (2): 164-180.doi: 10.3969/j.issn.1007-5461.2023.02.002
肖 文, 张明浩, 张存林, 张亮亮∗
收稿日期:
2022-09-29
修回日期:
2022-10-21
出版日期:
2023-03-28
发布日期:
2023-03-28
通讯作者:
liangliang_zhang@cnu.edu.cn
E-mail:liangliang_zhang@cnu.edu.cn
作者简介:
肖 文 ( 1995 - ), 江西赣州人, 研究生, 主要从事太赫兹波光电子学方面的研究。 E-mail: 974109512@qq.com
基金资助:
XIAO Wen, ZHANG Minghao, ZHANG Cunlin, ZHANG Liangliang ∗
Received:
2022-09-29
Revised:
2022-10-21
Published:
2023-03-28
Online:
2023-03-28
摘要: 最新的实验研究表明通过激光激发液体诱导等离子体可产生宽带太赫兹波, 且液体作为太赫兹波辐射 源具有独特的性质。液体具有与固体相当的物质密度, 激光在一定区域内与分子的相互作用比气体多三个数量 级; 而与固体相比, 液体的流动性使得每一个激光脉冲可与目标物液体靶的新区域相互作用。这些特性使得液 体在高能量密度等离子体的研究中具有广阔的前景, 甚至有可能成为下一代太赫兹波辐射源。本文全面综述了 液体的流体状态和种类、激光入射位置和角度、脉冲持续时间以及脉冲能量等因素对产生太赫兹波的影响。
中图分类号:
肖 文, 张明浩, 张存林, 张亮亮∗. 液体产生太赫兹波的特性研究[J]. 量子电子学报, 2023, 40(2): 164-180.
XIAO Wen, ZHANG Minghao, ZHANG Cunlin, ZHANG Liangliang ∗. Characteristics of terahertz wave generated from liquids[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 164-180.
[1]Jepsen P U, Cooke D G, Koch M.Terahertz spectroscopy and imaging-modern techniques and applications[J].Laser Photon. Rev., 2011, 5:124-166 [2]Hangyo M, Tani M, Nagashima T.Terahertz time-domain spectroscopy of solids: a review[J].Int. J. Infrared Millim. Waves, 2005, 26:1661-1690 [3]Tonouchi M.Cutting-edge terahertz technology[J].Nat. Photonics, 2007, 1:97-105 [4]Zalden P, Song L W, Wu X J, et al.Molecular polarizability anisotropy of liquid water revealed by terahertz-induced transient orientation[J].Nat. Commun., 2018, 9:2142- [5]Zhao H, Tan Y, Zhang L L, et al.Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz-induced transient birefringence[J]. Light Sci. Appl., 2020, 9:136- [6]Tan Y, Zhao H, Zhang R, et al.Transient evolution of quasifree electrons of plasma in liquid water revealed by optical-pump terahertz-probe spectroscopy [J]. Adv. Photon., 2021, 3: 015002. [7]Tcypkin A, Zhukova M, Melnik M, et al.Giant third-order nonlinear response of liquids at terahertz frequencies [J]. Phys. Rev. Appl., 2021, 15: 054009. [8]Fitzgerald A J, Berry E, Zinov' ev N N, et al.Catalogue of human tissue optical properties at terahertz frequencies[J].J. Biological Phys., 2003, 29(2-3):123-128 [9]Oh S J, Kim S, Ji Y B, et al.Study of freshly excised brain tissues using terahertz imaging[J].Opt. Express, 2014, 5(8):2837-2842 [10]Joseph C S, Yaroslavsky A N, Neel V A, et al.Continuous wave terahertz transmission imaging of nonmelanoma skin cancers[J].Laser Surg. Med., 2011, 43(6):457-462 [11]Cheon H, Yang H J, Li S H, et al.Terahertz molecular resonance of cancer DNA [J]. Sci. Reports, 2016, 6: 37103. [12]Melinger J S, Harsha S S, Laman N, et al.Temperature dependent characterization of terahertz vibrations of explosives and related threat materials[J].Opt. Express, 2010, 18(26):27238-27250 [13]Ergün S, S?nmez S.Terahertz technology for military applications[J].J. Military & Inform. Sci., 2015, 3(1):13-16 [14]Palka N, Szala M, Czerwinska E.Characterization of prospective explosive materials using terahertz time-domain spectroscopy[J].Appl. Opt., 2016, 55(17):4575-4583 [15]Nagatsuma, Tadao, Ducournau, et al.Advances in terahertz communications accelerated by photonics[J].Nat. Photonics, 2016, 10(6):371- [16]Kleine-Ostmann T, Nagatsuma T.A review on terahertz communications research [J]. J. Infrared Millim. Terahertz Waves, 2011, 32: 143-171. [17]Federici J, Moeller L.Review of terahertz and subterahertz wireless communications[J].J. Appl. Phys., 2010, 107(11):6- [18]Dai J M, Liu J L, Zhang X C.Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma [J]. IEEE J. Sel. Top. Quantum Electron., 2011, 17: 183-190. [19]Fül?p J A, Tzortzakis S, Kampfrath T.Laser-driven strong-field terahertz sources [J]. Adv. Opt. Mater., 2020, 8: 1900681. [20]Lee Y S, Principles of Terahertz Science and Technology (Springer, 2009). [21]Bartel T, Gaal P, Reimann K, et al.Generation of single-cycle THz transients with high electric-field amplitudes[J].Opt. Lett., 2005, 30(20):2805-2807 [22]Karpowicz N, Dai J M, Lu X F, et al.Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”[J].Appl. Phys. Lett., 2008, 92(1):011131- [23]Ronne C, Thrane L, ?strand P O, et al.Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation[J].J. Chem. Phys., 1997, 107(14):5319-5331 [24]Hale G M, Querry M R.Optical constants of water in the 200-nm to 200-μm wavelength region [J]. Appl. Opt., 1973, 12: 555-563. [25]Jin Q, E Y W, Williams K, et al.Observation of broadband terahertz wave generation from liquid water [J]. Appl. Phys. Lett., 2017, 111: 071103. [26]Dey I, Jana K, Fedorov V Y, et al.Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids [J]. Nat. Commun., 2017, 8: 1184. [27]Schnebelin C, Cassagne C, de Araújo C B, et al.Measurements of the third- and fifth-order optical nonlinearities of water at 532 and 1064??nm using the D4σ method[J].Optics Lett., 2014, 39(17):5046-5049 [28]Tcypkin A N, Melnik M V, Zhukova M O, et al.High Kerr nonlinearity of water in THz spectral range[J].Opt. Express, 2019, 27(8):10419-10425 [29]Williams F, Varma S, Hillenius S.Liquid water as a lone-pair amorphous semiconductor[J].J. Chem. Phys., 1976, 64(4):1549-1554 [30]Nikogosyan D N, Oraevsky A A, Rupasov V I.Twophoton ionization and dissociation of liquid water by powerful laser UV radiation[J].Chem. Phys., 1983, 77(1):131-143 [31]Crowell R A, Bartels D M.Multiphoton ionization of liquid water with 30-5.0 eV photons[J].J. Chem. Phys., 1996, 100(45):17940-17949 [32]Schneider A, Neis M, Stillhart M, et al.Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment [J]. J. Opt. Soc. Am. B, 2006, 23: 1822-1835. [33]Horiuchi N.Terahertz surprises[J].Nat. Photonics, 2018, 12(3):128-130 [34]Li M, Li Z, Nan J, et al.THz generation from water wedge excited by dual-color pulse [J]. Chin. Opt. Lett., 2020, 18: 073201. [35]Jin Q, E Y W, Gao S, et al.Preference of subpicosecond laser pulses for terahertz wave generation from liquids [J]. Adv. Photonics, 2020, 2: 015001. [36]Feng S J, Dong L Q, Wu T, et al.Terahertz wave emission from water lines [J]. Chin. Opt. Lett., 2020, 18: 023202. [37]Zhang L L, Wang W M, Wu T, et al.Strong terahertz radiation from a liquid-water line [J]. Phys. Rev. Appl., 2019, 12: 014005. [38]Chen Y, He Y, Zhang Y, et al.Systematic investigation of terahertz wave generation from liquid water lines [J]. Opt. Express, 2021, 29: 20477-20486. [39]Solyankin P M, Lakatosh B V, Krivokorytov M S, et al.Single free-falling droplet of liquid metal as a source of directional terahertz radiation [J]. Phys. Rev. Appl., 2020, 14: 034033. [40]Ismagilov A O, Ponomareva E A, Zhukova M O, et al.Liquid jet-based broadband terahertz radiation source [J]. Opt. Eng., 2021, 60: 082009. [41]E Y W, Zhang L L, Tcypkin A, et al.Broadband THz sources from gases to liquids [J]. Ultrafast Sci., 2021, 1: 9892763. [42]E Y W, Cao Y, Ling F, et al.Flowing cryogenic liquid target for terahertz wave generation [J]. AIP Adv., 2020, 10: 105119. [43]Balakin A V, Coutaz J L, Makarov V A, et al.Terahertz wave generation from liquid nitrogen[J].Photonics Res., 2019, 7(6):678-686 [44]Jin Q, Dai J M, E Y W, et al.Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields[J].Appl. Phys. Lett., 2018, 113(26):261101- [45]Watanabe A, Saito H, Ishida Y, et al.A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers [J]. Opt. Commun., 1989, 71: 301-304. [46]Taylor G.Formation of thin flat sheets of water [J]. Proc. R. Soc. London A, 1961, 259: 1-17. [47]Wang T, Klarskov P, Jepsen P U.Ultrabroadband THz time-domain spectroscopy of a free-flowing water film[J].IEEE Trans. Terahertz Sci. Technol., 2014, 4(4):425- [48]Hale G M, Querry M R.Optical constants of water in the 200-nm to 200-μm wavelength region[J].Appl. Opt., 1973, 12(3):555-563 [49]Kennedy P K, Hammer D X, Rockwell B A.Laser-induced breakdown in aqueous media[J].Prog. Quantum Electron., 1997, 21(3):155- [50]Hamster H, Sullivan A, Gordon S, et al.Subpicosecond,electromagnetic pulses from intense laser-plasma interaction[J].Phys. Rev. Lett., 1993, 71(17):2725- [51]Hamster H, Sullivan A, Gordon S, et al.Short-pulse terahertz radiation from high-intensity-laser-produced plasmas[J].Phys. Rev. E, 1994, 49(1):671- [52]E Y W, Jin Q, Tcypkin A, et al.Terahertz wave generation from liquid water films via laser-induced breakdown[J].Appl. Phys. Lett., 2018, 113(18):181103- [53]Buccheri F, Zhang X C.Terahertz emission from laser-induced microplasma in ambient air [J]. Optica, 2015, 2(4), 366. [54]Stumpf S, Ponomareva E, Tcypkin A, et al.Temporal field and frequency spectrum of intense femtosecond radiation dynamics in the process of plasma formation in a dielectric medium[J].Laser Phys., 2019, 29(12):124014- [55]Ponomareva E A, Stumpf S A, Tcypkin A N, et al.Impact of laser-ionized liquid nonlinear characteristics on the efficiency of terahertz wave generation [J]. Opt. Lett., 2019, 44(22), 5485-5488. [56]Kraus A D, Welty J R, Aziz A.Introduction to Thermal and Fluid Engineering (CRC Press, 2011). [57]Cook D J, Hochstrasser R M.Intense terahertz pulses by four-wave rectification in air [J]. Opt. Lett., 2000, 25: 1210. [58]Kress M, Loffler T, Eden S, et al.Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves [J]. Opt. Lett., 2004, 29: 1120. [59]Flettner A, Pfeifer T, Walter D, et al.High-harmonic generation and plasma radiation from water microdroplets[J].Appl. Phys. B, 2003, 77(8):747-751 [60]Kandidov V P, Kosareva O G, Golubtsov I S, et al.Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation)[J].Appl. Phys. B-Lasers Opt., 2003, 77(2-3):149-165 [61]Tcypkin A N, Ponomareva E A, Putilin S E, et al.Flat liquid jet as a highly efficient source of terahertz radiation[J].Opt. Express, 2019, 27(11):15485-15494 [62]Anand M, Kahaly S, Kumar G R, et al.Enhanced hard x-ray emission from microdroplet preplasma [J]. Appl. Phys. Lett., 2006, 88: 181111. [63]Vinokhodov A, Krivokorytov M, Sidelnikov Y, et al.Stable droplet generator for a high brightness laser produced plasma extreme ultraviolet source [J]. Rev. Sci. Instrum., 2016, 87: 103304. [64]Solyankin P M, Lakatosh B V, Krivokorytov M S, et al.Single free-falling droplet of liquid metal as a source of directional terahertz radiation [J]. Phys. Rev. Appl., 2020, 14: 034033. [65]Kim K Y, Glownia J H, Taylor A J, et al.Terahertz emission from ultrafast ionizing air in symmetrybroken laser fields[J].Opt. Express, 2007, 15(8):4577-4584 [66]Chin S L.Femtosecond Laser Filamentation (Springer, 2010). [67]Berglund M, Rymell L, Hertz H M.Ultraviolet prepulse for enhanced x-ray emission and brightness from droplettarget laser plasmas[J].Appl. Phys. Lett., 1996, 69(12):1683-1685 [68]Anand M, Kahaly S, Kumar G R, et al.Enhanced hard x-ray emission from microdroplet preplasma[J].Appl. Phys. Lett., 2006, 88(18):181111- [69]Ponomareva E A, Tcypkin A N, Smirnov S V, et al.Double-pump technique-one step closer towards efficient liquidbased THz sources[J].Opt. Express, 2019, 27(22):32855- [70]Ponomareva E A, Ismagilov A O, Putilin S E, et al.Varying pre-plasma properties to boost terahertz wave generation in liquids[J].Commun. Phys., 2021, 4(1):4- [71]Huang H H, Nagashima T, Hsu W H, et al.Dual THz wave and X-ray generation from a water film under femtosecond laser excitation[J].Nanomaterials (Basel, Switzerland), 2018, 8(7):523- [72]E Y W, Jin Q, Zhang X C.Enhancement of terahertz emission by a preformed plasma in liquid water[J].Appl. Phys. Lett., 2019, 115(10):101101- [73]Samios J, Mittag U, Dorfmüller T.The far infrared absorption spectrum of liquid nitrogen [J]. Mol. Phys., 1985, 56: 541-556. [74]Cao Y, E Y W, Huang P, et al.Broadband terahertz wave emission from liquid metal [J]. Appl. Phys. Lett., 2020, 117: 4. [75]Snyder L R.Classification of the solvent properties of common liquids[J].J. Chromatogr. A, 1974, 92(2):223-230 |
[1] | 钱龙龙 , 沈 咏 , 刘 曲 , 邹宏新 . 全固态瓦级 388 nm 紫外连续激光器[J]. 量子电子学报, 2023, 40(3): 392-399. |
[2] | 王泽城, 杨忠明∗, 张行愚, 范书振, 陈晓寒, 丛振华, 刘兆军, 秦增光, 明 娜, 郭全鑫, 郭丽媛. 太赫兹参量源研究进展[J]. 量子电子学报, 2023, 40(2): 141-163. |
[3] | 董秦鲁, 韩一平∗ , 张启凡. 太赫兹波在高超声速目标等离子体 鞘套中的传输特性[J]. 量子电子学报, 2023, 40(2): 258-266. |
[4] | 阮志强, 张 磊, 赵欣瑜, 江兴方∗. 一种新型圆形掺杂光子晶体光纤负色散特性的分析[J]. 量子电子学报, 2023, 40(1): 133-138. |
[5] | 陈荣泉∗, 陈源福, 王 清, 吴志钢. 离轴多涡旋-高斯光束在负折射率 介质中的传输特性[J]. 量子电子学报, 2022, 39(5): 795-805. |
[6] | 王形华, 陈荣泉∗, 王清. 强非局域介质中复宗量厄米-高斯型空间光孤子[J]. 量子电子学报, 2022, 39(3): 459-466. |
[7] | 王 莹, 刘晓枫, 任盼盼, 李 爽, 窦振国, 门志伟∗. 共振增强水分子 O-H 伸缩振动受激拉曼散射[J]. 量子电子学报, 2021, 38(6): 774-779. |
[8] | 王晓洋∗, 刘丽娟. 氟硼铍酸钾晶体及深紫外全固态激光[J]. 量子电子学报, 2021, 38(2): 131-147. |
[9] | 单排, 王祖建, 苏榕冰, , 何超, 杨晓明, 龙西法, . 准相位匹配深紫外非线性光学晶体研究进展[J]. 量子电子学报, 2021, 38(2): 180-184. |
[10] | 李壮, 李春霄, 姚吉勇, ∗, 吴以成, . BaGa4Se7 和BaGa2GeSe6 晶体研究进展[J]. 量子电子学报, 2021, 38(2): 185-191. |
[11] | 王锦丽 钟春晓 任喜梅 李蓉. 小损耗介质中非相干耦合光束的传输特性[J]. 量子电子学报, 2021, 38(1): 10-16. |
[12] | 滕浩, 鲁欣, 沈忠伟, 陈式友, 陈荣毅, 魏文寿, 魏志义. 野外环境下太瓦飞秒激光等离子体通道 特性研究[J]. 量子电子学报, 2020, 37(5): 513-523. |
[13] | 朱方明 李 军 胡克用. 中远红外波段周期凹槽金属表面的等离子体激元[J]. 量子电子学报, 2020, 37(1): 110-117. |
[14] | 徐慧梅,臧天阳,鲁拥华*,王沛. 利用高阶高斯光束实现表面等离子体的非对称激发[J]. 量子电子学报, 2019, 36(5): 545-551. |
[15] | 全先富1,2, 张硕3,张建奇1*. 基于受激布里渊散射的拉姆齐干涉仪[J]. 量子电子学报, 2019, 36(2): 206-212. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 419
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 353
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||