[1] Kasparian J, Sauerbrey R and Chin S L. The critical laser intensity of self-guided light filaments in air[J]. Applied Physics B-Lasers and Optics, 2000, 71(6): 877-879.[2] Tzortzakis S, Franco M A, Andre Y B, Chiron A, Lamouroux B, Prade B S. A Formation of a conducting channel in air by self-guided femtosecond laser pulses[J]. Physical Review E, 1999, 60(4): 3505-3507.[3] Tzortzakis S, Prade B, Franco M and Mysyrowicz A. Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air[J]. Optics Communications, 2000, 181(1-3): 123-127.[4] Daigle J F, Kosareva O, Panov N, Begin M, Lessard F, Marceau C, Kamali Y, Roy G, Kandidov V P and Chin S L. A simple method to significantly increase filaments' length and ionization density[J]. Applied Physics B-Lasers and Optics, 2009, 94(2): 249-257.[5] Reyes D, Baudelet M, Richardson M and Fairchild S R. Transition from linear- to nonlinear-focusing regime of laser filament plasma dynamics[J]. Journal of Applied Physics, 2018, 124(5): 053103.[6] Rodriguez M, Sauerbrey R, Wille H, Woste L, Fujii T, Andre Y B, Mysyrowicz A, Klingbeil L, Rethmeier K, Kalkner W, Kasparian J, Salmon E, Yu J and Wolf J P. Triggering and guiding megavolt discharges by use of laser-induced ionized filaments[J]. Optics Letters, 2002, 27(9): 772-774.[7] Theberge F, Chateauneuf M, Ross V, Mathieu P and Dubois J. Ultrabroadband conical emission generated from the ultraviolet up to the far-infrared during the optical filamentation in air[J]. Optics Letters, 2008, 33(21): 2515-2517.[8] Schimmel G, Produit T, Mongin D, Kasparian J and Wolf J P. Free space laser telecommunication through fog[J]. Optica, 2018, 5(10): 1338-1341.[9] Rostami S, Chini M, Lim K, Palastro John P, Durand M, Diels J C, Arissian L, Baudelet M and Richardson M. Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments[J]. Scientific Reports, 2016, 6:20363.[10] Mejean G, Kasparian J, Salmon E, Yu J, Wolf J P, Bourayou R, Sauerbrey R, Rodriguez M, Woste L, Lehmann H, Stecklum B, Laux U, Eisloffel J, Scholz A and Hatzes A P. Towards a supercontinuum-based infrared lidar[J]. Applied Physics B-Lasers and Optics, 2003, 77(2-3): 357-359.[11] Jeon C, Harper D, Lim K, Durand M, Chini M, Baudelet M and Richardson M. Interaction of a single laser filament with a single water droplet[J]. Journal of Optics, 2015, 17(5):055502.[12] Kasparian J, Rodriguez M, Mejean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, Andre Y B, Mysyrowicz A, Sauerbrey R, Wolf J P and Woste L. White-light filaments for atmospheric analysis[J]. Science, 2003, 301(5629): 61-64.[13] Wolf J P. Short-pulse lasers for weather control[J]. Reports on Progress in Physics, 2018, 81(2):026001. [14] Thul D, Bernath R, Bodnar N, Kerrigan H, Reyes D, Pena J, Roumayah P, Shah L, Maukonen D, Bradford J, Baudelet M, Fairchild S R and Richardson M. The mobile ultrafast high energy laser facility - A new facility for high-intensity atmospheric laser propagation studies[J]. Optics and Lasers in Engineering, 2021, 140:106519.[15] XU Huailiang, CHENG Ya, Chin SeeLeang and SUN HongBo. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Reviews, 2015, 9(3): 275-293.[16] Parigger Ch G, Helstern Ch M, Jordan B S, Surmick D M. and Splinter R. Laser-Plasma Spatiotemporal Cyanide Spectroscopy and Applications[J]. Molecules, 2020, 25(3):615. [17] Ferus M, Pietrucci F, Saitta A M, Ivanek O, Knizek A, Kubelik P, Krus M, Juha L, Dudzak R, Dostal J, Pastorek A, Petera L, Hrncirova J, Saeidfirozeh H, Shestivska V, Sponer J, Sponer J E, Rimmer P, Civis S and Cassone G. Prebiotic synthesis initiated in formaldehyde by laser plasma simulating high-velocity impacts[J]. Astronomy & Astrophysics, 2019, 626:A52. [18] HE Youfan, Preissing P, Steuer D, Klich M, Schulz-Von Der Gathen Volker, Boeke Marc, Korolov Ihor, Schulze Julian, Guerra Vasco, Brinkmann Ralf Peter and Kemaneci Efe. Zero-dimensional and pseudo-one-dimensional models of atmospheric-pressure plasma jets in binary and ternary mixtures of oxygen and nitrogen with helium background[J]. Plasma Sources Science & Technology, 2021, 30(10): 105017. [19] Pavlovich Matthew J, Clark Douglas S and Graves David B. Quantification of air plasma chemistry for surface disinfection[J]. Plasma Sources Science & Technology, 2014, 23(6): 065036. [20] WU Dianming, DENG Lingling, LIU Yanzhuo, XI Di, ZOU Huilan, WANG Ruhai, SHA Zhimin, PAN Yuepeng, HOU Lijun and LIU Min. Comparisons of the effects of different drying methods on soil nitrogen fractions: Insights into emissions of reactive nitrogen gases (HONO and NO)[J]. Atmospheric and Oceanic Science Letters, 2020, 13(3): 224-231.[21] Herron J T. Modeling studies of the formation and destruction of NO in pulsed barrier discharges in nitrogen and air[J]. Plasma Chemistry and Plasma Processing, 2001, 21(4): 581-609.[22] Petit Y, Henin S, Kasparian J and Wolf J P. Production of ozone and nitrogen oxides by laser filamentation[J]. Applied Physics Letters, 2010, 97(2): 021108[23] Camino A, LI Shaowei, HAO Zuoqiang and LIN Jingquan. Spectroscopic determination of NO2, NO3, and O3 temporal evolution induced by femtosecond filamentation in air[J]. Applied Physics Letters, 2015, 106(2): 021105. |