量子电子学报 ›› 2024, Vol. 41 ›› Issue (6): 839-851.doi: 10.3969/j.issn.1007-5461.2024.06.001

• 综述 •    下一篇

晶格工程电子态调控研究 (封面文章)

张丹彤 1,2, 薛冬峰 1,3*   

  1. 1 中国科学院深圳先进技术研究院多尺度晶体材料研究中心, 广东 深圳 518055; 2 齐齐哈尔大学化学与化学工程学院, 黑龙江 齐齐哈尔 161006; 3 电子科技大学(深圳)高等研究院, 广东 深圳 518110
  • 收稿日期:2023-10-10 修回日期:2023-11-06 出版日期:2024-11-28 发布日期:2024-11-28
  • 通讯作者: E-mail: dfxue@uestc.edu.cn E-mail:E-mail: dfxue@uestc.edu.cn
  • 作者简介:张丹彤 ( 1993 - ), 女, 黑龙江齐齐哈尔人, 博士, 助理研究员, 主要从事电催化能源转化新材料设计及轨道耦合机制方面研究。E-mail: dt.zhang@qqhru.edu.cn
  • 基金资助:
    国家自然科学基金 (52220105010, 51832007)

Lattice engineering for electronic state control research (Cover Paper)

ZHANG Dantong 1,2 , XUE Dongfeng 1,3*   

  1. 1 Multiscale Crystal Materials Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; 2 College of Chemistry and Chemical Engineering, University of Qiqihar, Qiqihar 161006, China; 3 Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
  • Received:2023-10-10 Revised:2023-11-06 Published:2024-11-28 Online:2024-11-28

摘要: 晶格工程在材料科学和器件设计领域扮演着关键角色, 通过精确构建晶格有序态、超晶格态、晶格缺陷态 等, 能够有效构筑材料的拓扑有序态, 实现宏观尺度晶格架构定制并提升其在光、电、磁等领域的性能。基于晶格的 本征周期性形成的拓扑有序态材料, 其特殊的能带结构在电子输运过程中表现出高导电性、较低的能量损耗以及特 殊的量子霍尔效应; 基于超晶格的空间组装性和纵向旋转性构筑的摩尔条纹系列材料, 为光电传感器和光子学器件 等性能的提升开辟了新途径; 而晶格缺陷能够有效构筑局域电子态、缺陷自旋态等特殊效应, 有利于设计磁性调控和 磁存储器件。

关键词: 量子光学, 晶格工程, 晶格缺陷, 超晶格, 晶格应变

Abstract: Lattice engineering plays a crucial role in the fields of material science and device design. By precisely constructing lattice-ordered states, superlattice states, lattice defect states, etc., it becomes possible to effectively build materials with topological order and customize the macroscopic lattice architecture to enhance their functionality in areas such as optics, electronics, and magnetism. Specifically, materials with topological order based on the intrinsic periodicity of the lattice exhibit unique band structures that result in high conductivity, lower energy loss, and special quantum Hall effect during electron transport. And superlattice materials assembled through spatial organization and longitudinal rotation, such as the Moiré pattern series, can provide new avenues for improving the performance of optoelectronic sensors and photonic devices. While lattice defects enable the realization of localized electronic states, defect spin states, and other special effects, facilitating the design of magnetic control and magnetic storage devices.

Key words: quantum optics, lattice engineering, lattice defect, superlattice, lattice strain

中图分类号: