| [1]Zhang Y, Zhang D, Zhang Z, et al. Optical Bloch oscillation and Zener tunneling in an atomic system[J]. Optica, 2017, 4(5): 571-575. [2]Khanikaev A B, Alu A. Nonlinear dynamic reciprocity[J]. Nature Photonics, 2015, 9(6): 359-361.[3]Ramezani H, Kottos T, El-Ganainy R, et al. Unidirectional nonlinear PT-symmetric optical structures[J]. Physical Review A, 2010, 82(4): 043803. [4]Lodahl P, Mahmoodian S, Stobbe S, et al. Chiral quantum optics[J]. Nature, 2017, 541(7638): 473-480. [5]Xia K, Lu G, Lin G, et al. Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling[J]. Physical Review A, 2014, 90(4): 043802.[6]Sayrin C, Junge C, Mitsch R, et al. Nanophotonic optical isolator controlled by the internal state of cold atoms[J]. Physical Review X, 2015, 5(4): 041036. [7]Scheucher M, Hilico A, Will E, et al. Quantum optical circulator controlled by a single chirally coupled atom[J]. Science, 2016, 354(6319): 1577-1580. [8]Xu X W, Li Y, Chen A X, et al. Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems[J]. Physical Review A, 2016, 93(2): 023827. [9]Fang K, Luo J, Metelmann A, et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering[J]. Nature Physics, 2017, 13(5): 465-471.[10]Li Y, Huang Y Y, Zhang X Z, et al. Optical directional amplification in a three-mode optomechanical system[J]. Optics Express, 2017, 25(16): 18907-18916. [11]Jiang C, Song L N, Li Y. Directional amplifier in an optomechanical system with optical gain[J]. Physical Review A, 2018, 97(5): 053812. [12]Ruesink F, Miri M A, Alu A, et al. Nonreciprocity and magnetic-free isolation based on optomechanical interactions[J]. Nature communications, 2016, 7(1): 13662. [13]Yang P, Xia X, He H, et al. Realization of nonlinear optical nonreciprocity on a few-photon level based on atoms strongly coupled to an asymmetric cavity[J]. Physical Review Letters, 2019, 123(23): 233604. [14]J. Wang. Optical nonreciprocity in two-cavity optomechanical system[J]. Chinese Journal of Quantum Electronics, 2020, 37(3): 328-336(in Chinese).王婧. 双腔光力学系统中光学非互易[J]. 量子电子学报, 2020, 37(3): 328-336.[15]Huang R, Miranowicz A, Liao J Q, et al. Nonreciprocal photon blockade[J]. Physical Review Letters, 2018, 121(15): 153601. [16]Tang L, Tang J, Chen M, et al. Quantum squeezing induced optical nonreciprocity[J]. Physical Review Letters, 2022, 128(8): 083604.[17]Yang L, Zhang Y, Yan X B, et al. Dynamically induced two-color nonreciprocity in a tripod system of a moving atomic lattice[J]. Physical Review A, 2015, 92(5): 053859. [18]Wang D W, Zhou H T, Guo M J, et al. Optical diode made from a moving photonic crystal[J]. Physical Review Letters, 2013, 110(9): 093901. [19]Wu J H, Artoni M, La Rocca G C. Parity-time-antisymmetric atomic lattices without gain[J]. Physical Review A, 2015, 91(3): 033811. [20]Chaung Y L, Shamsi A, Abbas M. Coherent control of nonreciprocal reflections with spatial modulation coupling in parity-time symmetric atomic lattice[J]. Optics Express, 2020, 28(2): 1701-1713. [21]Ba N, Wu X Y, Li D F, et al. Dynamically controlled optical nonreciprocity of a double-ladder system with spontaneously generated coherence in moving atomic optical lattice[J]. Chinese Physics B, 2017, 26(5): 054207. [22]Huang X, Lu C, Liang C, et al. Loss-induced nonreciprocity[J]. Light: Science & Applications, 2021, 10(1): 30. [23]Horsley S A R, Longhi S. Spatiotemporal deformations of reflectionless potentials[J]. Physical Review A, 2017, 96(2): 023841. [24]Horsley S A R, Artoni M, La Rocca G C. Spatial Kramers–Kronig relations and the reflection of waves[J]. Nature Photonics, 2015, 9(7): 436-439. [25]Jiang W, Ma Y, Yuan J, et al. Deformable broadband metamaterial absorbers engineered with an analytical spatial Kramers‐Kronig permittivity profile[J]. Laser & Photonics Reviews, 2017, 11(1): 1600253. [26]Liu D, Huang Y, Hu H, et al. Designing spatial Kramers–Kronig media using transformation optics[J]. IEEE Transactions on Antennas and Propagation, 2019, 68(4): 2945-2949. [27]Longhi S. Bidirectional invisibility in Kramers–Kronig optical media[J]. Optics letters, 2016, 41(16): 3727-3730. [28]Ye D, Cao C, Zhou T, et al. Observation of reflectionless absorption due to spatial Kramers–Kronig profile[J]. Nature communications, 2017, 8(1): 51. [29]Philbin T G. All-frequency reflectionlessness[J]. Journal of Optics, 2015, 18(1): 01LT01.[30]Pei X S, Zhang H X, Pan M M, et al. Two-color unidirectional reflections by modulating the spatial susceptibility in a homogeneous atomic medium[J]. Optics Express, 2023, 31(9): 14694-14704.[31]Geng Y, Pei X S, Li G R, et al. Spatial susceptibility modulation and controlled unidirectional reflection amplification via four-wave mixing[J]. Optics Express, 2023, 31(23): 38228-38239.[32]Li G R, Geng Y, Pei X S, et al. Phase and detuning control of the unidirectional reflection amplification based on the broken spatial symmetry[J]. Optics Express, 2024, 32(7):12839-51. |