量子电子学报 ›› 2023, Vol. 40 ›› Issue (6): 952-962.doi: 10.3969/j.issn.1007-5461.2023.06.015

• 量子光学 • 上一篇    下一篇

基于随机优化模型的量子线路映射辅助设计方法

卫丽华 1, 朱鹏程 1,2*, 管致锦 2   

  1. ( 1 宿迁学院信息与计算科学系, 江苏 宿迁 223800; 2 南通大学信息科学技术学院, 江苏 南通 226019 )
  • 收稿日期:2022-01-10 修回日期:2022-04-09 出版日期:2023-11-28 发布日期:2023-11-28
  • 通讯作者: E-mail: zhupcnt@163.com E-mail:E-mail: zhupcnt@163.com
  • 作者简介:卫丽华 ( 1984 - ), 女, 江苏南通人, 硕士,讲师, 主要从事可逆逻辑综合、量子逻辑综合方面的研究。E-mail: angelirene@163.com
  • 基金资助:
    国家自然科学基金 (62072259), 江苏省自然科学基金 (BK20221411), 江苏省高校哲学社会科学项目(2022SJYB2416)

A computer⁃aided⁃design methodology for quantum circuit mapping based on stochastic optimization model

WEI Lihua1 , ZHU Pengcheng1,2*, GUAN Zhijin2   

  1. ( 1 Department of Information and Computing Science, Suqian University, Suqian 223800, China; 2 College of Information Science and Technology, Nantong University, Nantong 226019, China )
  • Received:2022-01-10 Revised:2022-04-09 Published:2023-11-28 Online:2023-11-28

摘要: 物理量子位之间的受限连通性是含噪中型量子计算设备面临的重要约束之一。量子线路映射方法通过插 入量子交换 (SWAP) 门对量子线路进行变换, 使得其中的每一个量子位交互操作均满足物理设备施加的受限连通约 束。在噪声环境下, 减少插入的SWAP门数对于提升量子计算成功率有重要意义。以最小化SWAP门数为目标, 结 合随机搜索技术, 提出了一种基于多迭代随机寻优模型的启发式量子线路映射优化方法。实验结果表明, 该方法可 以通过迭代大幅减少量子线路映射过程所需插入的量子门数, 并有效降低结果物理线路对初始映射的依赖程度。

关键词: 量子计算, 量子线路映射, 含噪中型量子计算, 受限连通性, 随机优化

Abstract: The limited connectivity between physical qubits is one of the most important constraints for noisy intermediate-scale quantum (NISQ) computing devices. Quantum circuit mapping makes all qubits in quantum circuits exchange mutually by inserting SWAP gates to satisfy the restricted connectivity constraints of physical devices. In a noisy computing environment, reducing the number of inserted SWAP gates is of great significance to improve the success rate of quantum computing. In order to minimize the number of SWAP gates, a heuristic quantum circuit mapping algorithm is proposed, and then based on the heuristic algorithm and the random search technology, a multi-iterative stochastic optimization model for quantum circuit mapping is proposed. The experimental results show that the method can greatly reduce the number of quantum gates inserted during the quantum circuit mapping process, and effectively reduce the dependence of the resulting physical circuit on the initial mapping.

Key words: quantum computing, quantum circuit mapping, noisy intermediate-scale quantum computing, limited connectivity, stochastic optimization

中图分类号: