[1] Chong F T, Franklin D, Martonosi M. Programming languages and compiler design for realistic quantum hardware[J]. Nature, 2017, 549(7671): 180-187.[2] Beckman D, Chari A N, Devabhaktuni S, et al. Efficient networks for quantum factoring[J]. Physical Review A, 1996, 54(2):1034.[3] Markov I L, Saeedi M. Constant-optimized quantum circuits for modular multiplication and exponentiation[J].Quantum Information & Computation, 2012, 12(5-6):361-394.[4] Niemann P, Basu S, Chakrabarti A, et al. Synthesis of quantum circuits for dedicated physical machine descriptions[C]. International Conference on Reversible Computation. Grenoble, France, 2015: 248-264.[5] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition[M]. Cambridge: Cambridge University Press, 2010.[6] Shor P W. Algorithms for quantum computation: discrete logarithms and factoring[C]. Proceedings 35th annual symposium on foundations of computer science. IEEE, 1994: 124-134.[7] Abdessaied N, Drechsler R. Reversible and quantum circuits: Optimization and complexity analysis[M]. Cham: Springer International Publishing, 2016.[8] Zulehner A, Wille R. Introducing design automation for quantum computing: volume 11[M]. Springer, 2020.[9] Gambetta J M, Chow J M, Steffen M. Building logical qubits in a superconducting quantum computing system[J]. npj quantum information, 2017, 3(1):2.[10] Abobeih M, Wang Y, Randall J, et al. Fault-tolerant operation of a logical qubit in a diamond quantum processor[J]. Nature, 2022, 606(7916): 884-889.[11] Dawson C M, Nielsen M A. The Solovay-Kitaev algorithm[J]. Quantum Information and Computation, 2006, 6(1): 81-95.[12] Zhang C, Hayes A B, Qiu L, et al. Time-optimal qubit mapping[C]. Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021: 360-374.[13] Desoete B, De Vos A. A reversible carry-look-ahead adder using control gates[J]. Integration, 2002, 33(1-2):89-104.[14] Barenco A, Bennett C H, Cleve R, et al. Elementary gates for quantum computation[J]. Physical review A, 1995, 52(5):3457.[15] Gao D, He X, Woodcock J, et al. Improving quantum circuits of Toffoli gates[OL]. https://meetings.ams.org/math/jmm2022/meetingapp.cgi/Paper/9514[16] McColl W F, Patterson M S. The depth of all Boolean functions[J]. SIAM Journal on Computing, 1977, 6(2): 373-380.[17] Gottesman D. Theory of fault-tolerant quantum computation[J]. Physical Review A, 1998, 57(1):127.[18] De Brugière T G, Baboulin M, Valiron B, et al. Gaussian elimination versus greedy methods for the synthesis of linear reversible circuits[J]. ACM Transactions on Quantum Computing, 2021, 2(3):1-26.[19] Patel K N, Markov I L, Hayes J P. Optimal synthesis of linear reversible circuits.[J]. Quantum Inf. Comput., 2008, 8(3):282-294.[20] Jiang J, Sun X, Teng S H, et al. Optimal space-depth trade-off of CNOT circuits in quantum logic synthesis[C]. Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 2020: 213-229.[21] Meuli G, Soeken M, Micheli G D. Sat-based {CNOT, T} quantum circuit synthesis[C]. International Conference on Reversible Computation. Leicester, UK. Springer, 2018: 175-188.[22] Nash B, Gheorghiu V, Mosca M. Quantum circuit optimizations for NISQ architectures[J]. Quantum Science and Technology, 2020, 5(2):025010.[23] Kissinger A, MEIJER-VAN DE GRIEND A. Cnot circuit extraction for topologically-constrained quantum memories[J]. Quantum information & computation, 2020, 20(7-8): 581-596.[24] Oore C, Nilsson M. Parallel quantum computation and quantum codes[J]. SIAM journal on computing, 2001, 31(3):799-815.[25] De Brugière T G, Baboulin M, Valiron B, et al. Reducing the depth of linear reversible quantum circuits[J]. IEEE Transactions on Quantum Engineering, 2021, 2:1-22.[26] Cole R, Ost K, Schirra S. Edge-coloring bipartite multigraphs in O (e logd) time[J]. Combinatorica, 2001, 21(1):5-12.[27] Alon N. A simple algorithm for edge-coloring bipartite multigraphs[J]. Information Processing Letters, 2003, 85(6):301-302.[28] Kutin S A, Moulton D P, Smithline L M. Computation at a distance[OL]. 2007, arXiv:quant-ph/0701194, https://arxiv.org/abs/quant-ph/0701194[29] Maslov D, Young C, Miller D M, et al. Quantum circuit simplification using templates[C]. Design, Automation and Test in Europe. IEEE, 2005: 1208-1213.[30] Bluvstein D, Levine H, Semeghini G, et al. A quantum processor based on coherent transport of entangled atom arrays[J]. Nature, 2022, 604 (7906):451-456.[31] Kreppel F, Melzer C, Millán D O, et al. Quantum circuit compiler for a shuttling-based trapped-ion quantum computer[J]. Quantum, 2023, 7: 1176.[32] Bandyopadhyay C, Wille R, Drechsler R, et al. Post synthesis-optimization of reversible circuit using template matching[C]. 2020 24th Inter- national Symposium on VLSI Design and Test (VDAT). IEEE, 2020: 1-4.[33] Bravyi S, Kitaev A. Universal quantum computation with ideal Clifford gates and noisy ancillas[J]. Physical Review A, 2005, 71(2):022316.[34] Amy M, Maslov D, Mosca M. Polynomial-time t-depth optimization of Clifford+ t circuits via matroid partitioning[J]. IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems, 2014, 33(10):1476-1489.[35] Datta K, Rathi G, Sengupta I, et al. Synthesis of reversible circuits using heuristic search method[C]. 2012 25th International Conference on VLSI Design. IEEE, 2012: 328-333.[36] Shende V V, Prasad A K, Markov I L, et al. Synthesis of reversible logic circuits[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2003, 22(6):710-722.[37] Saeedi M, Zamani M S, Sedighi M, et al. Reversible circuit synthesis using a cycle-based approach[J]. ACM Journal on Emerging Technologies in Computing Systems (JETC), 2010, 6(4):1-26.[38] Abdessaied N, Soeken M, Thomsen M K, et al. Upper bounds for reversible circuits based on Young subgroups[J]. Information Processing Letters, 2014, 114(6):282-286.[39] Zakablukov D V. On asymptotic gate complexity and depth of reversible circuits without additional memory[J]. Journal of Computer and System Sciences, 2017, 84:132-143.[40] Li L, Wu X. Asymptotically optimal synthesis of reversible circuits[OL]. 2023, arXiv:2302.06074, https://arxiv.org/abs/2302.06074[41] Wille R, Drechsler R. BDD-based synthesis of reversible logic for large functions[C]. Proceedings of the 46th Annual Design Automation Conference. 2009: 270-275.[42] Da Silva A J, Park D K. Linear-depth quantum circuits for multiqubit controlled gates[J]. Physical Review A, 2022, 106(4): 042602.[43] Naderpour F, Vafaei A. Reversible multipliers: Decreasing the depth of the circuit[C]. 2008 International Conference on Electrical and Computer Engineering. IEEE, 2008: 306-310.[44] Abdessaied N, Wille R, Soeken M, et al. Reducing the depth of quantum circuits using additional circuit lines[C]. Reversible Computation: 5th International Conference, RC 2013, Victoria, BC, Canada. Springer, 2013: 221-233.[45] Arabzadeh M, Saheb Zamani M, Sedighi M, et al. Depth-optimized reversible circuit synthesis[J]. Quantum information processing, 2013, 12: 1677-1699.[46] Patel T, Silver D, Tiwari D. Geyser: a compilation framework for quantum computing with neutral atoms[C]. Proceedings of the 49th Annual International Symposium on Computer Architecture. 2022: 383-395.[47] Amy M, Azimzadeh P, Mosca M. On the controlled-not complexity of controlled-not–phase circuits[J]. Quantum Science and Technology, 2018, 4 (1):015002.[48] Amy M, Mosca M. T-count optimization and Reed–Muller codes[J]. IEEE Transactions on Information Theory, 2019, 65(8):4771-4784.[49] Shi Y, Leung N, Gokhale P, et al. Optimized compilation of aggregated instructions for realistic quantum computers[C]. Proceedings of the Twenty- Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. 2019: 1031-1044.[50] Maslov D, Zindorf B. Depth optimization of Cz, Cnot, and Clifford circuits[J]. IEEE Transactions on Quantum Engineering, 2022, 3:1-8.[51] Li G, Ding Y, Xie Y. Tackling the qubit mapping problem for NISQ-era quantum devices[C]. Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. 2019: 1001-1014.[52] Herr D, Nori F, Devitt S J. Optimization of lattice surgery is NP-hard[J]. Npj quantum information, 2017, 3(1):1-5.[53] Childs A M, Schoute E, Unsal C M. Circuit transformations for quantum architectures[OL]. 2019, arXiv:1902.09102, https://arxiv.org/abs/1902.09102.[54] Zhang C, Hayes A B, Qiu L, et al. Time-optimal qubit mapping[C]. Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021: 360-374.[55] Botea A, Kishimoto A, Marinescu R. On the complexity of quantum circuit compilation[C]. Proceedings of the International Symposium on Combinatorial Search: volume 9. 2018: 138-142 319. |