量子电子学报 ›› 2024, Vol. 41 ›› Issue (5): 780-792.doi: 10.3969/j.issn.1007-5461.2024.05.008

• 量子光学 • 上一篇    下一篇

基于量子奇异值估计的岭回归算法

陈康炯1, 郭躬德2, 林 崧2*   

  1. (1 福建师范大学光电与信息工程学院, 福建 福州 350007; 2 福建师范大学计算机与网络空间安全学院, 福建 福州 350007)
  • 收稿日期:2022-09-21 修回日期:2022-10-22 出版日期:2024-09-28 发布日期:2024-09-28
  • 通讯作者: E-mail: lins95@fjnu.edu.cn E-mail: E-mail: lins95@fjnu.edu.cn
  • 作者简介:陈康炯 ( 1996 - ), 广东湛江人, 研究生, 主要从事量子机器学习方面的研究。E-mail: 3466786698@qq.com
  • 基金资助:
    国家自然科学基金 (62171131, 61976053, 61772134) , 福建省高等学校新世纪优秀人才支持计划, 福建省自然科学基金 (2022J01186)

Ridge regression algorithm based on quantum singular value estimation

CHEN Kangjiong1 , GUO Gongde2 , LIN Song2*   

  1. (1 College of Optoelectronics and Information Engineering, Fujian Normal University, Fuzhou 350007, China; 2 College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350007, China)
  • Received:2022-09-21 Revised:2022-10-22 Published:2024-09-28 Online:2024-09-28

摘要: 作为一种有监督学习算法, 岭回归算法有着十分广泛的使用。本工作将量子奇异值估计与经典岭回归算法 相结合, 提出了一种量子岭回归算法。该算法利用量子计算的并行特性, 实现了对岭回归拟合参数的求解以及预测 值的获取。复杂度分析表明, 所提算法有效解决了数据矩阵为非厄米矩阵时需要进行矩阵拓展或者矩阵运算的问 题, 与经典算法相比在运行时间上具有指数级加速。此外, 本工作还给出了所提算法的量子电路图并对其关键步骤 进行了仿真实验, 实验结果验证了所提算法的有效性和可行性。

关键词: 量子计算, 量子岭回归, 量子奇异值估计, 量子幅度估计

Abstract: As a kind of supervised learning algorithm, ridge regression algorithm has a wide range of applications. A quantum ridge regression algorithm is proposed by combining quantum singular value estimation with classical ridge regression algorithm. In the proposed algorithm, the parallel property of quantum computation is utilized to solve the fitting parameters of ridge regression and obtain the predicted values. Complexity analysis shows that the proposed algorithm effectively solves the problem of matrix expansion or matrix operation when the data matrix is non-Hermitian matrix, and has exponential acceleration in running time compared with the classical algorithms. In addition, the quantum circuit diagram of the proposed algorithm is also provided and the key steps of the algorithm are simulated. The simulation results confirm its effectiveness and feasibility.

Key words: quantum computing, quantum ridge regression, quantum singular value estimation, quantum amplitude estimation

中图分类号: