[1] Aspelmeyer M, Kippenberg T J, Marquardt F, Cavity optomechanics [J], Reviews of Modern Physics, 2014, 86: 1391-1452.[2] Kippenberg T J, Vahala K J, Cavity Optomechanics: Back-Action at the Mesoscale [J], Science, 2008, 321: 1172-1176.[3] Marquardt F, Girvin S M, Optomechanics [J], Physics, 2009, 2: 40.[4] Arcizet O, Cohadon P F, Briant T, Pinard M, and Heidmann A, Radiation-pressure cooling and optomechanical instability of a micromirror [J], Nature, 2006, 444: 71-74.[5] Kippenberg T J, Rokhsari H, Carmon T, Scherer A, and Vahala K J, Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity [J], Physical Review Letters, 2005, 95: 033901.[6] Jiang X, Lin Q, Rosenberg J, Vahala K, and Painter O, High-Q double-disk microcavities for cavity optomechanics [J], Optics Express, 2009, 17: 20911-20919.[7] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, and Harris J G E, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane [J], Nature, 2008, 452: 72-75.[8] Sankey J C, Yang C, Zwickl B M, Jayich A M, and Harris J G E, Strong and tunable nonlinear optomechanical coupling in a low-loss system [J], Nature. Physics, 2010, 6: 707-712.[9] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, and Simmonds R W, Circuit cavity electromechanics in the strong-coupling regime [J], Nature, 2011, 471: 204-208.[10] Chen B, Jiang C, and Zhu K D, Slow light in a cavity optomechanical system with a Bose-Einstein condensate [J], Physical Review A, 2011, 83: 055803.[11] Marquardt F, Chen J P, Clerk A A, and Girvin S M, Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion [J], Physical Review Letters, 2007, 99: 093902.[12] He B, Yang L, Lin Q, and Xiao M, Radiation Pressure Cooling as a Quantum Dynamical Process [J], Physical Review Letters, 2017, 118: 233604.[13] Yan X B, Deng Z J, Tian X D, and Wu J H, Entanglement optimization of filtered output fields in cavity optomechanics [J], Optics Express, 2019, 27: 24393-24402.[14] Deng Z J, Yan X B, Wang Y D, and Wu C W, Optimizing the output-photon entanglement in multimode optomechanical systems [J], Physical Review A, 2016, 93: 033842.[15] Ren X X, Li H K, Yan M Y, Liu Y C, Xiao Y F, and Gong Q, Single-photon transport and mechanical NOON-state generation in microcavity optomechanics [J], Physical Review A, 2013, 87: 033807.[16] He B, Yang L, Jiang X, and Xiao X, Transmission Nonreciprocity in a Mutually Coupled Circulating Structure [J], Physical Review Letters, 2018, 120: 203904.[17] Wang J, Optical nonreciprocity in two-cavity optomechanical system [J], Chinese Journal of Quantum Electronics (量子电子学报),2020, 37(3): 328-336 (in Chinese). [18] Xia C C, Yan X B, Tian X D, and Gao F, Ideal optical isolator with a two-cavity optomechanical system [J], Optics Communications, 2019, 451: 197-201.[19] Agarwal G S and Huang S, Electromagnetically induced transparency in mechanical effects of light [J], Physical Review A, 2010, 81: 041803(R).[20] Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J, Optomechanically Induced Transparency [J], Science, 2010, 330: 1520–1523.[21] Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O, Electromagnetically induced transparency and slow light with optomechanics, Nature, 2011, 472: 69–73.[22] Liu Y C, Li B B and Xiao Y F, Electromagnetically induced transparency in optical microcavities [J], Nanophotonics, 2017, 6(5): 789-811.[23] Huang S and Agarwal G S, Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes [J], Physical Review A, 2011, 83(2): 023823.[24] Lü H, Wang C, Yang L and Jing H, Optomechanically Induced Transparency at Exceptional Points [J], Physical Review Applied, 2018, 10(1): 014006.[25] Dong C, Fiore V, Kuzyk M C and Wang H, Transient optomechanically induced transparency in a silica microsphere [J], Physical Review A, 2013, 87(5): 055802.[26] Xiong H, Si L G, Zheng A S, Yang X and Wu Y, Higher-order sidebands in optomechanically induced transparency [J], Physical Review A, 2012, 86(1): 013815.[27] Ma P C, Zhang J Q, Xiao Y, Feng M, and Zhang Z M, Tunable double optomechanically induced transparency in an optomechanical system [J], Physical Review A, 2014, 90(4): 043825.[28] Yan X B, Optomechanically induced ultraslow and ultrafast light [J], Physica E, 2021, 131: 114759.[29] Qian L B, and Yan X B, Perfect optomechanically induced transparency in two-cavity optomechanics [J], Frontiers of Physics, 2023, 18(5): 52301.[30] Kronwald A and Marquardt F, Optomechanically Induced Transparency in the Nonlinear Quantum Regime [J], Physical Review Letters, 2013, 111(13): 133601.[31] Yan X B, Optomechanically induced transparency and gain [J], Physical Review A, 2020, 101(4): 043820.[32] Yan X B, Optomechanically induced optical responses with non-rotating wave approximation [J], Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54: 035401.[33] Chang D E, Safavi-Naeini A H, Hafezi M and Painter O, Slowing and stopping light using an optomechanical crystal array [J], New Journal of Physics, 2011, 13: 023003.[34] Tarhan D, Huang S and Müstecaplioglu ? E, Superluminal and ultraslow light propagation in optomechanical systems [J], Physical Review A, 2013, 87(1): 013824.[35] Akram M J, Khan M M and Saif F, Tunable fast and slow light in a hybrid optomechanical system [J], Physical Review A, 2015, 92(2): 023846.[36] Gu K H, Yan X B, Zhang Y, Fu C B, Liu Y M, Wang X and Wu J H, Tunable slow and fast light in an atom-assisted optomechanical system [J], 2015, Optics Communications, 338: 569-573.[37] Liao Q, Xiao X, Nie W, Zhou N, Transparency and tunable slow-fast light in a hybrid cavity optomechanical system [J], Optics express, 2020, 28(4): 5288-5305.[38] Zhao Y N, Wang T, Wang D Y, Han X, Zhang S, and Wang H F, Optical amplification and fast-slow light in a three-mode cavity optomechanical system without rotating wave approximation [J], Photonics, 2021, 8(9): 384.[39] Brennecke F, Ritter S, Donner T, and Esslinger T, Cavity Optomechanics with a Bose-Einstein Condensate [J], Science, 2008, 322(5899): 235-238.[40] Chen B, Jiang C, and Zhu K D, Tunable all-optical Kerr switch based on a cavity optomechanical system with a Bose–Einstein condensate [J], Journal of the Optical Society of America B, 2011, 28(8): 2007-2013.[41] Bigelow M S, Lepeshkin N N and Boyd R W, Superluminal and Slow Light Propagation in a Room-Temperature Solid [J], Science, 2003, 301(5630): 200–202. |