[1] Chen X, Lizuain I, Ruschhaupt A, et al. Shortcut to adiabatic passage in two-and three-level atoms[J]. Physical review letters, 2010, 105(12): 123003.
[2] Guéry-Odelin D, Ruschhaupt A, Kiely A, et al. Shortcuts to adiabaticity: Concepts, methods, and applications[J]. Reviews of Modern Physics, 2019, 91(4): 045001.
[3] Hegade N N, Paul K, Ding Y, et al. Shortcuts to Adiabaticity in Digitized Adiabatic Quantum Computing[J]. Physical Review Applied, 2021, 15(2): 024038.
[4] Jarzynski C, Deffner S, Patra A, et al. Fast forward to the classical adiabatic invariant[J]. Physical Review E, 2017, 95(3): 032122.
[5] Patra A, Jarzynski C. Semiclassical fast-forward shortcuts to adiabaticity[J]. Physical Review Research, 2021, 3(1): 013087.
[6] Abah O, Paternostro M, Lutz E. Shortcut-to-adiabaticity quantum Otto refrigerator[J]. Physical Review Research, 2020, 2(2): 023120.
[7] Dupays L, Egusquiza I, Del Campo A, et al. Superadiabatic thermalization of a quantum oscillator by engineered dephasing[J]. Physical Review Research, 2020, 2(3): 033178.
[8] Funo K, Lambert N, Karimi B, et al. Speeding up a quantum refrigerator via counterdiabatic driving[J]. Physical Review B, 2019, 100(3): 035407.
[9] Li L, Li H, Yu W, et al. Shortcut-to-adiabaticity quantum tripartite Otto cycle[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54(21): 215501.
[10] Hartmann A, Mukherjee V, Niedenzu W, et al. Many-body quantum heat engines with shortcuts to adiabaticity[J]. Physical Review Research, 2020, 2(2): 023145.
[11] Zhang X-M, Wei Z, Asad R, et al. When does reinforcement learning stand out in quantum control? A comparative study on state preparation[J]. npj Quantum Information, 2019, 5(1): 1-7.
[12] He R-H, Wang R, Nie S-S, et al. Deep reinforcement learning for universal quantum state preparation via dynamic pulse control[J]. EPJ Quantum Technology, 2021, 8(1): 29.
[13] Sgroi P, Palma G M, Paternostro M. Reinforcement learning approach to nonequilibrium quantum thermodynamics[J]. Physical Review Letters, 2021, 126(2): 020601.
[14] Khait I, Carrasquilla J, Segal D. Optimal control of quantum thermal machines using machine learning[J]. Physical Review Research, 2022, 4(1): L012029.
[15] Erdman P A, Rolandi A, Abiuso P, et al. Pareto-optimal cycles for power, efficiency and fluctuations of quantum heat engines using reinforcement learning[J]. arXiv preprint arXiv:2207.13104, 2022.
[16] Plastina F, Alecce A, Apollaro T J, et al. Irreversible work and inner friction in quantum thermodynamic processes[J]. Physical review letters, 2014, 113(26): 260601.
[17] Sutton R S, Barto A G. Reinforcement Learning: An Introduction[J]. IEEE Transactions on Neural Networks, 1998, 9(5): 1054-1054.
|