[1] O'MALLEY P J J, BABBUSH R, KIVLICHAN I D, et al. Scalable Quantum Simulation of Molecular Energies [J]. Physical Review X, 2016, 6(3).[2] GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation [J]. Reviews of Modern Physics, 2014, 86(1): 153-85.[3] CAO Y D, ROMERO J, OLSON J P, et al. Quantum Chemistry in the Age of Quantum Computing [J]. Chemical Reviews, 2019, 119(19): 10856-915.[4] MCARDLE S, ENDO S, ASPURU-GUZIK A, et al. Quantum computational chemistry [J]. Reviews of Modern Physics, 2020, 92(1).[5] HEMPEL C, MAIER C, ROMERO J, et al. Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator [J]. Physical Review X, 2018, 8(3).[6] MONROE C, RAUSSENDORF R, RUTHVEN A, et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects [J]. Physical Review A, 2014, 89(2).[7] LEKITSCH B, WEIDT S, FOWLER A G, et al. Blueprint for a microwave trapped ion quantum computer [J]. Science Advances, 2017, 3(2).[8] ZHANG W, DING D S, SHENG Y B, et al. Quantum Secure Direct Communication with Quantum Memory [J]. Physical Review Letters, 2017, 118(22).[9] PIRANDOLA S. End-to-end capacities of a quantum communication network [J]. Communications Physics, 2019, 2.[10] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring; proceedings of the Proceedings 35th annual symposium on foundations of computer science, F, 1994 [C]. Ieee.[11] WENDIN G. Quantum information processing with superconducting circuits: a review [J]. Reports on Progress in Physics, 2017, 80(10).[12] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor [J]. Nature, 2019, 574(7779): 505-10.[13] PAIK H, SCHUSTER D I, BISHOP L S, et al. Observation of High Coherence in Josephson Junction Qubits Measured in a Three-Dimensional Circuit QED Architecture [J]. Physical Review Letters, 2011, 107(24).[14] ZHONG H-S, WANG H, DENG Y-H, et al. Quantum computational advantage using photons [J]. Science, 2020, 370(6523): 1460-3.[15] ARRAZOLA J M, BERGHOLM V, BRADLER K, et al. Quantum circuits with many photons on a programmable nanophotonic chip [J]. Nature, 2021, 591(7848): 54-+.[16] BRUZEWICZ C D, CHIAVERINI J, MCCONNELL R, et al. Trapped-ion quantum computing: Progress and challenges [J]. Applied Physics Reviews, 2019, 6(2).[17] BLATT R, ROOS C F. Quantum simulations with trapped ions [J]. Nature Physics, 2012, 8(4): 277-84.[18] KIM Y S, LEE J C, KWON O, et al. Protecting entanglement from decoherence using weak measurement and quantum measurement reversal [J]. Nature Physics, 2012, 8(2): 117-20.[19] ROFFE J. Quantum error correction: an introductory guide [J]. Contemporary Physics, 2019, 60(3): 226-45.[20] REED M D, DICARLO L, NIGG S E, et al. Realization of three-qubit quantum error correction with superconducting circuits [J]. Nature, 2012, 482(7385): 382-5.[21] EMMANOUILIDOU A, ZHAO X-G, AO P, et al. Steering an eigenstate to a destination [J]. Physical review letters, 2000, 85(8): 1626.[22] AO P. Potential in stochastic differential equations: novel construction [J]. Journal of physics A: mathematical and general, 2004, 37(3): L25.[23] KWON C, AO P, THOULESS D J. Structure of stochastic dynamics near fixed points [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13029-33.[24] CHEN Y-C. Theory of quantum dynamics in fermionic environment: An influence functional approach [J]. Journal of statistical physics, 1987, 47(1): 17-55.[25] BARZILAI J, BORWEIN J M. Two-point step size gradient methods [J]. IMA journal of numerical analysis, 1988, 8(1): 141-8.[26] MANZANO D. A short introduction to the Lindblad master equation [J]. AIP Advances, 2020, 10(2): 025106. |