[1] Landaurer, R. (1961). Irreversibility and heat generation in the computational process. IBM Journal of Research and Development, 5, 183-191[2] Bennett, C. H. (1973). Logical reversibility of computation. Maxwell’s Demon. Entropy, Information, Computing, 197-204.[3] Perkowski, M., Jozwiak, L., Kerntopf, P., Mishchenko, A., Al-Rabadi, A., Coppola, A., ... & Chrzanowska-Jeske, M. (2001). A general decomposition for reversible logic. [4] Perkowski, M., & Kerntopf, P. (2001). Reversible logic. Invited tutorial. Proc. EURO-MICRO.[5] Babu, H. M. H., & Chowdhury, A. R. (2005, January). Design of a reversible binary coded decimal adder by using reversible 4-bit parallel adder. In 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design (pp. 255-260). IEEE.[6] Nielson, M. A., & Chuang, I. L. (2000). Quantum computation and quantum information. [7] Satsangi, S., & Patvardhan, C. (2016). Enhanced Quantum Inspired Evolutionary Algorithm for Automatic synthesis of Reversible Circuits.International Journal of Engineering Technology Science and Research, 3(1), 34-45.[8] Bechmann-Pasquinucci, H., & Peres, A. (2000). Quantum cryptography with 3-state systems. Physical Review Letters, 85(15), 3313.[9] Bourennane, M., Karlsson, A., & Bj?rk, G. (2001). Quantum key distribution using multilevel encoding. Physical Review A, 64(1), 012306.[10] Greentree, A. D., Schirmer, S. G., Green, F., Hollenberg, L. C., Hamilton, A. R., & Clark, R. G. (2004). Maximizing the Hilbert space for a finite number of distinguishable quantum states. Physical review letters, 92(9), 097901. [11] Miller, D. M., & Thornton, M. A. (2007). Multiple valued logic: concepts and representations. Synthesis lectures on digital circuits and systems, 2(1), 1-127.[12] Curtis, E., & Perkowski, M. (2004). A transformation based algorithm for ternary reversible logic synthesis using universally controlled ternary gates.Proc. IWLS 2004, 345-352. [13] Zadeh, R. P., & Haghparast, M. (2011). A new reversible/quantum ternary comparator. Australian Journal of Basic and Applied Sciences, 5(12), 2348-2355.[14] Khan, M. H., Perkowski, M. A., Khan, M. R., & Kerntopf, P. (2005). Ternary GFSOP minimization using kronecker decision diagrams and their synthesis with quantum cascades. Journal of Multiple Valued Logic and Soft Computing, 11(5/6), 567.[15] Khan, M. H., Perkowski, M. A., & Khan, M. R. (2004, May). Ternary Galois field expansions for reversible logic and Kronecker decision diagrams for ternary GFSOP minimization [Galois field sum of products]. In Multiple-Valued Logic, 2004. Proceedings. 34th International Symposium on (pp. 58-67). IEEE.[16] Khan, M. H., & Perkowski, M. (2005, September). Quantum realization of ternary encoder and decoder. In Proc. 7th Int. Symp. Representations and Methodology of Future Computing Technologies (RM2005), Tokyo, Japan. [17] Khan, M. H. (2006). Design of Reversible/Quantum Ternary Multiplexer and Demultiplexer. Engineering letters, 13(2), 65-69. [18] Monfared, A. T., & Haghparast, M. (2016). Design of New Quantum/Reversible Ternary Subtractor Circuits. Journal of Circuits, Systems and Computers, 25(02), 1650014.[19] Monfared, A. T., & Haghparast, M. (2015). Novel Design of Quantum/Reversible Ternary Comparator Circuits. Journal of Computational and Theoretical Nanoscience, 12(12), 5670-5673. [20] Houshmand, P., & Haghparast, M. (2015). Design of a novel quantum reversible ternary up-counter. International Journal of Quantum Information, 13(05), 1550038.[21] Haghparast, M., Wille, R., & Monfared, A. T. (2017). Towards quantum reversible ternary coded decimal adder. Quantum Information Processing, 16(11), 284.[22] Monfared, A. T., & Haghparast, M. (2017). Designing new ternary reversible subtractor circuits. Microprocessors and Microsystems, 53, 51-56. [23] Khan, M. H., & Perkowski, M. A. (2007, May). GF (4) based synthesis of quaternary reversible/quantum logic circuits. In 37th International Symposium on Multiple-Valued Logic (ISMVL'07) (pp. 11-11). IEEE. [24] Khan, M. H. (2008, May). Reversible realization of quaternary decoder, multiplexer, and demultiplexer circuits. In 38th International Symposium on Multiple Valued Logic (ismvl 2008) (pp. 208-213). IEEE.[25] ahangir, I., & Das, A. (2010, December). On the design of quaternary comparators. In Computer and Information Technology (ICCIT), 2010 13th International Conference on (pp. 241-246). IEEE.[26] Khan, M. H. (2008). Synthesis of quaternary reversible/quantum comparators.Journal of Systems Architecture, 54(10), 977-982.[27] Khan, M. M. M., Biswas, A. K., Chowdhury, S., Tanzid, M., Mohsin, K. M., Hasan, M., & Khan, A. I. (2008, November). Quantum realization of some quaternary circuits. In TENCON (Vol. 2008, pp. 19-21).[28] Khan, M. H. (2009, May). Scalable Architectures for Design of Reversible Quaternary Multiplexer and Demultiplexer Circuits. In 2009 39th International Symposium on Multiple-Valued Logic (pp. 343-348). IEEE.[29] Khan, M. H., & Thapliyal, H. (2015, July). Reversible Logic Based Mapping of Quaternary Sequential Circuits Using QGFSOP Expression. In 2015 IEEE Computer Society Annual Symposium on VLSI (pp. 297-302). IEEE. [30] Meena, J. K., Jain, S. C., Gupta, H., & Gupta, S. (2015, March). Synthesis of balanced quaternary reversible logic circuit. In Circuit, Power and Computing Technologies (ICCPCT), 2015 International Conference on (pp. 1-6). IEEE. [31] Haghparast, M., & Monfared, A. T. (2017). Designing Novel Quaternary Quantum Reversible Subtractor Circuits. International Journal of Theoretical Physics, 1-12.[32] Haghparast, M., & Dousttalab, N. (2017). Design of new reversible quaternary flip-flops. International Journal of Quantum Information, 15(04), 1750024. [33] Haghparast, M., & Monfared, A. T. (2017). Novel Quaternary Quantum Decoder, Multiplexer and Demultiplexer Circuits. International Journal of Theoretical Physics, 56(5), 1694-1707. [34] Muthukrishnan, A., & Stroud Jr, C. R. (2000). Multivalued logic gates for quantum computation. Physical Review A, 62(5), 052309.[35] Thapliyal, H. (2016). Mapping of Subtractor and Adder-Subtractor Circuits on Reversible Quantum Gates. In Transactions on Computational Science XXVII (pp. 10-34). Springer Berlin Heidelberg.[36] Taheri Monfared, A., & Haghparast, M. (2016). Design of novel quantum/reversible ternary adder circuits. International Journal of Electronics Letters, 1-9. [37] Haghparast, M., & Bolhassani, A. (2016). Optimized parity preserving quantum reversible full adder/subtractor. International Journal of Quantum Information, 1650019.[38] Bose, A., & Babu, H. M. H. (2015, December). Optimized designs of reversible fault tolerant BCD adder and fault tolerant reversible carry skip BCD adder. In 2015 18th International Conference on Computer and Information Technology (ICCIT) (pp. 202-207). IEEE.[39] Khan, M. H. (2008). A recursive method for synthesizing quantum/reversible quaternary parallel adder/subtractor with look-ahead carry. Journal of Systems Architecture, 54(12), 1113-1121.[40] Mandal, S. B., Chakrabarti, A., & Sur-Kolay, S. (2012). A synthesis method for quaternary quantum logic circuits. In Progress in VLSI Design and Test (pp. 270-280). Springer Berlin Heidelberg. [41] Thapliyal, H., & Ranganathan, N. (2011, March). A new reversible design of bcd adder. In 2011 Design, Automation & Test in Europe (pp. 1-4). IEEE.[42] Burignat, S., & De Vos, A. (2011, June). Test of a majority-based reversible (quantum) 4 bits ripple-carry adder in adiabatic calculation. In Mixed Design of Integrated Circuits and Systems (MIXDES), 2011 Proceedings of the 18th International Conference (pp. 368-373). IEEE. [43] Mohammadi, M., Eshghi, M., Haghparast, M., & Bahrololoom, A. (2008). Design and optimization of reversible bcd adder/subtractor circuit for quantum and nanotechnology based systems. World Applied Sciences Journal, 4(6), 787-792. [44] lvhongjun. Research of the quantum reversible logic circuits with a new compound method[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2010, 27(2): 174-179[45] Khan, M. H. (2006, December). Quantum realization of quaternary Feynman and Toffoli gates. In 2006 International Conference on Electrical and Computer Engineering (pp. 157-160). IEEE. |