量子电子学报 ›› 2022, Vol. 39 ›› Issue (1): 3-31.doi: 10.3969/j.issn.1007-5461.2022.01.001
徐 凯1♯ , 曹 洹1,2♯ , 张 超1∗ , 胡晓敏1 , 黄运锋1∗ , 柳必恒1 , 李传锋1∗
收稿日期:
2021-09-30
修回日期:
2021-11-03
出版日期:
2022-01-28
发布日期:
2022-01-28
通讯作者:
E-mail: zhc1989@ustc.edu.cn; hyf@ustc.edu.cn; cfli@ustc.edu.cn
E-mail:E-mail: zhc1989@ustc.edu.cn; hyf@ustc.edu.cn; cfli@ustc.edu.cn
作者简介:
徐 凯 ( 1998 - ), 浙江江山人, 研究生, 主要从事光量子信息方面的研究。 E-mail: sa038015@mail.ustc.edu.cn
曹 洹 ( 1992 - ), 福建漳州人,博士, 主要从事光量子信息方面的研究。 E-mail: huancao@mail.ustc.edu.cn
基金资助:
XU Kai 1♯ , CAO Huan 1,2♯ , ZHANG Chao 1∗ , HU Xiaomin 1 , HUANG Yunfeng 1∗ , LIU Biheng 1 , LI Chuanfeng 1∗
Received:
2021-09-30
Revised:
2021-11-03
Published:
2022-01-28
Online:
2022-01-28
摘要: 携带轨道角动量 (OAM) 的光束理论上拥有无限个相互正交的本征态, 因此可以作为独立信息传输光束 促进大容量经典光通信的发展。在量子信息领域, 近年来高维量子系统因为有更大的信道容量和更强的抗噪声 能力引起了研究人员的极大兴趣, 而光子 OAM 出色的维度拓展能力使其成为实现高维量子系统的重要手段。 综述了光子 OAM 传输的研究进展, 重点介绍和分析了自由空间、光纤以及水下等多种传输方式下 OAM 量子 叠加态和纠缠态分发工作, 并对实际应用中面临的问题和潜在的解决方案进行了阐述, 可为相关领域研究者提 供参考。
中图分类号:
徐 凯♯, 曹 洹, ♯, 张 超∗, 胡晓敏, 黄运锋∗, 柳必恒, 李传锋∗. 光子轨道角动量量子态传输研究进展[J]. 量子电子学报, 2022, 39(1): 3-31.
XU Kai ♯ , CAO Huan , ♯ , ZHANG Chao ∗ , HU Xiaomin , HUANG Yunfeng ∗ , LIU Biheng , LI Chuanfeng ∗. Recent advances in transmission of photonic orbital angular momentum quantum state[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 3-31.
[1] Duan L M, Lukin M, Cirac J I, et al. Long-distance quantum communication with atomic ensembles and linear optics [J]. Nature, 2001, 414(6862) : 413-418.[2] Bose S. Quantum Communication Through an Unmodulated Spin Chain [J]. Physical Review Letters, 2003, 91(20) : 207901.[3] Ursin R, Tiefenbacher F, Schmitt-Manderbach T, et al. Entanglement-based quantum communication over 144 km [J]. Nature Physics, 2007, 3(7) : 481-486.[4] Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced measurements: beating the standard quantum limit [J]. Science, 2004, 306(5700) : 1330-1336.[5] Leuenberger M N, Loss D. Quantum computing in molecular magnets [J]. Nature, 2001, 410(6830) : 789-793.[6] Bennett C H, Bernstein E, Fa Z, et al. Strengths and Weaknesses of Quantum Computing [J]. SIAM Journal on Computing, 2016, 26(5) : 1510-1523.[7] Shor P W. Algorithms for quantum computation: discrete logarithms and factoring [C]. Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994: 124-134.[8] Sit A, Bouchard F, Fickler R, et al. High-dimensional intracity quantum cryptography with structured photons [J]. Optica, 2017, 4(9) : 1006-1010.[9] Mirhosseini, Mohammad, Maga?a-Loaiza, et al. High-dimensional quantum cryptography with twisted light [J]. New Journal of Physics, 2015, 17(3) : 033033.[10] Mafu M, Dudley A, Goyal, et al. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases [J]. Physical Review A, 2013, 88(3) : 032305.[11] Karlsson A, Bourennane M. Quantum teleportation using three-particle entanglement [J]. Physical Review A, 2002, 58(6) : 4394-4400.[12] Kim Y H, Kulik S P, Shih Y. Quantum teleportation of a polarization state with a complete bell state measurement [J]. Phys Rev Lett, 2001, 86(7) : 1370-1373.[13] Zeilinger A. Quantum teleportation [J]. Sci Am, 2000, 282(4) : 50-59.[14] Shor P. Algorithms for Quantum Computing: Discrete Log and Factoring [J]. Proceedings of Annual Symposium on the Foundations of Computer Science IEEE Computer Society Press Los Alamitos Ca, 1994,124-134.[15] L S. Satellite-based entanglement distribution over 1200 kilometers [J]. Science, 2017, 356(6343) : 1140-1144.[16] Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor [J]. Nature, 2019, 574(7779) : 505-510.[17] Zhong H S, Wang H, Deng Y H, et al. Quantum computational advantage using photons [J]. Science, 2020, 370(6523) : 1460-1463.[18] Gong M, Wang S, Zha C, et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor [J]. Science, 2021, 372(6545) : 948-952.[19] Einstein A, Podolsky B, Rosen N J P R. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? [J]. Physical Review, 1935, 47(10) : 696-702.[20] Bell J S. On the Einstein Podolsky Rosen paradox [J]. Physics Physique Fizika, 1964, 1(3) : 195-200.[21] Aspect A, Grangier P, Roger G. Experimental Tests of Realistic Local Theories via Bell's Theorem [J]. Physical Review Letters, 1981, 47(7) : 460-463.[22] Aspect A, Dalibard J, Roger G. Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities [J]. Physical Review Letters, 1982, 49(2) : 91-94.[23] Hensen B, Bernien H, Dreau A E, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres [J]. Nature, 2015, 526(7575) : 682-686.[24] Lloyd S. Enhanced sensitivity of photodetection via quantum illumination [J]. Science, 2008, 321(5895) : 1463-1465.[25] Neeley M, Ansmann M, Bialczak R C, et al. Emulation of a quantum spin with a superconducting phase qudit [J]. Science, 2009, 325(5941) : 722-725.[26] Kaltenbaek R, Lavoie J, Zeng B, et al. Optical one-way quantum computing with a simulated valence-bond solid [J]. Nature Physics, 2010, 6(11) : 850-854.[27] Babazadeh A, Erhard M, Wang F, et al. High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments [J]. Phys Rev Lett, 2017, 119(18) : 180510.[28] Tavakoli A, Cabello A, ?ukowski M, et al. Quantum Clock Synchronization with a Single Qudit [J]. Scientific Reports, 2015, 5(1) : 7982.[29] Barreiro J T, Wei T-C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding [J]. Nature Physics, 2008, 4(4) : 282-286.[30] Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution [J]. Reviews of Modern Physics, 2009, 81(3) : 1301-1350.[31] Cerf N J, Bourennane M, Karlsson A, et al. Security of quantum key distribution using d-level systems [J]. Phys Rev Lett, 2002, 88(12) : 127902.[32] Sheridan L, Scarani V. Security proof for quantum key distribution using qudit systems [J]. Physical Review A, 2010, 82(3) : 030301.[33] Navez P, Cerf N J. Cloning a real d-dimensional quantum state on the edge of the no-signaling condition [J]. Physical Review A, 2003, 68(3) : 32313-32313.[34] Bru? D, Macchiavello C. Optimal state estimation for d-dimensional quantum systems [J]. Physics Letters A, 1999, 253(5) : 249-251.[35] Chen J L, Kaszlikowski D, Kwek L C, et al. Entangled three-state systems violate local realism more strongly than qubits: An analytical proof [J]. Physical Review A, 2001, 64(5) : 52109.[36] Durt T, Kaszlikowski D, ?ukowski M. Violations of local realism with quantum systems described by N-dimensional Hilbert spaces up to $N=16$ [J]. Physical Review A, 2001, 64(2) : 024101.[37] Mermin N D. Quantum mechanics vs local realism near the classical limit: A Bell inequality for spin $s$ [J]. Physical Review D, 1980, 22(2) : 356-361.[38] Garg A, Mermin N D. Bell Inequalities with a Range of Violation that Does Not Diminish as the Spin Becomes Arbitrarily Large [J]. Physical Review Letters, 1982, 49(13) : 901-904.[39] Peres A. Finite violation of a Bell inequality for arbitrarily large spin [J]. Phys Rev A, 1992, 46(7) : 4413-4414.[40] Kaszlikowski D, Gnaciński P, Zukowski M, et al. Dimensional Systems Are Stronger than for Two Qubits [J]. Physical Review Letters, 2000, 85(21) : 4418-4421.[41] Durt T, Kaszlikowski D, Zukowski M. Violations of local realism with quantum systems described by N-dimensional Hilbert spaces up to N=16 [J]. Physical Review A, 2001, 64(2) : 024101.[42] Collins D, Gisin N, Linden N, et al. Bell inequalities for arbitrarily high-dimensional systems [J]. Phys Rev Lett, 2002, 88(4) : 040404.[43] Guo Y, Hu X M, Liu B H, et al. Experimental realization of path-polarization hybrid high-dimensional pure state [J]. Optics Express, 2018, 26(22) : 28918-28926.[44] Hu X M, Liu B H, Guo Y, et al. Observation of Stronger-than-Binary Correlations with Entangled Photonic Qutrits [J]. Phys Rev Lett, 2018, 120(18) : 180402.[45] Ikuta T, Takesue H. Four-dimensional entanglement distribution over 100 km [J]. Sci Rep, 2018, 8(1) : 817.[46] Franson J D. Bell inequality for position and time [J]. Phys Rev Lett, 1989, 62(19) : 2205-2208.[47] Martin A, Guerreiro T, Tiranov A, et al. Quantifying Photonic High-Dimensional Entanglement [J]. Phys Rev Lett, 2017, 118(11) : 110501.[48] Fickler R, Campbell G, Buchler B, et al. Quantum entanglement of angular momentum states with quantum numbers up to 10,010 [J]. Proceedings of the National Academy of Sciences, 2016, 113(48) : 13642.[49] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons [J]. Nature, 2001, 412(6844) : 313-316.[50] Krenn M, Huber M, Fickler R, et al. Generation and confirmation of a (100 x 100)-dimensional entangled quantum system [J]. Proceedings of the National Academy of Sciences, 2014, 111(17) : 6243-6247.[51] Erhard M, Malik M, Krenn M, et al. Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits [J]. Nature Photonics, 2018, 12(12) : 759-764.[52] Malik M, Erhard M, Huber M, et al. Multi-photon entanglement in high dimensions [J]. Nature Photonics, 2016, 10(4) : 248-252.[53] Mirhosseini M, Malik M, Shi Z, et al. Efficient separation of the orbital angular momentum eigenstates of light [J]. Nature Communications, 2013, 4(1) : 2781.[54] Wen Y, Chremmos I, Chen Y, et al. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes [J]. Physical Review Letters, 2018, 120(19) : 193904.[55] Berkhout G C, Lavery M P, Courtial J, et al. Efficient sorting of orbital angular momentum states of light [J]. Phys Rev Lett, 2010, 105(15) : 153601.[56] Brandt F, Hiekkam?ki M, Bouchard F, et al. High-dimensional quantum gates using full-field spatial modes of photons [J]. Optica, 2020, 7(2) : 98-107.[57] Zhang Y, Roux F S, Konrad T, et al. Engineering two-photon high-dimensional states through quantum interference [J]. Science Advances, 2016, 2(2) : e1501165.[58] Chen Y, Gao J, Jiao Z Q, et al. Mapping Twisted Light into and out of a Photonic Chip [J]. Phys Rev Lett, 2018, 121(23) : 233602.[59] Chen Y, Xia K Y, Shen W G, et al. Vector Vortex Beam Emitter Embedded in a Photonic Chip [J]. Physical Review Letters, 2020, 124(15) : 153601.[60] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science, 2011, 334(6054) : 333-337.[61] Li G, Kang M, Chen S, et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light [J]. Nano Lett, 2013, 13(9) : 4148-4151.[62] Karimi E, Schulz S A, Leon I D, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface [J]. Light: Science & Applications, 2014, 3(5) : e167.[63] Allen L, Beijersbergen M W, Spreeuw R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Phys Rev A, 1992, 45(11) : 8185-8189.[64] Willner A E, Zhao Z, Liu C, et al. Perspectives on advances in high-capacity, free-space communications using multiplexing of orbital-angular-momentum beams [J]. APL Photonics, 2021, 6(3).[65] Gori F, Guattari G, Padovani C. Bessel-Gauss Beams [J]. Optics Communications, 1987, 64(6) : 491-495.[66] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications [J]. Advances in Optics and Photonics, 2009, 1(1) : 1-57.[67] Fu S Y, Gao C Q. Selective Generation of Arbitrary Vectorial Vortex Beams [J]. Acta Optica Sinica, 2019, 39(1).[68] Okida M, Omatsu T, Itoh M, et al. Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO(4) 1.3-mum bounce laser [J]. Optics Express, 2007, 15(12) : 7616-7622.[69] Lee A J, Omatsu T, Pask H M. Direct generation of a first-Stokes vortex laser beam from a self-Raman laser [J]. Optics Express, 2013, 21(10) : 12401-12409.[70] Lee A J, Zhang C, Omatsu T, et al. An intracavity, frequency-doubled self-Raman vortex laser [J]. Optics Express, 2014, 22(5) : 5400-5409.[71] Wang S, Zhang S L, Qiao H C, et al. Direct generation of vortex beams from a double-end polarized pumped Yb:KYW laser [J]. Optics Express, 2018, 26(21) : 26925-26932.[72] Miao P, Zhang Z, Sun J, et al. Orbital angular momentum microlaser [J]. Science, 2016, 353(6298) : 464-467.[73] Cai X, Wang J, Strain M J, et al. Integrated compact optical vortex beam emitters [J]. Science, 2012, 338(6105) : 363-366.[74] Su T H, Scott R P, Djordjevic S S, et al. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices [J]. Optics Express, 2012, 20(9) : 9396-9402.[75] Guan B, Scott R P, Qin C, et al. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit [J]. Optics Express, 2014, 22(1) : 145.[76] Zhou N, Zheng S, Cao X P, et al. Generating and synthesizing ultrabroadband twisted light using a compact silicon chip [J]. Optics Letters, 2018, 43(13) : 3140-3143.[77] Shuang Z, Jian W. On-chip orbital angular momentum modes generator and (de)multiplexer based on trench silicon waveguides [J]. Optics Express, 2017, 25(15) : 18492.[78] Xiao Q, Klitis C, Li S, et al. Generation of photonic orbital angular momentum superposition states using vortex beam emitters with superimposed gratings [C]. 2016 Conference on Lasers and Electro-Optics (CLEO), 2016: 1-2.[79] Lin J, Yuan X, Tao S H, et al. Synthesis of multiple collinear helical modes generated by a phase-only element [J]. J Opt Soc Am A Opt Image Sci Vis, 2006, 23(5) : 1214-1218.[80] Wei S B, Wang D P, Lin J, et al. Demonstration of orbital angular momentum channel healing using a Fabry-Perot cavity [J]. Opto-Electronic Advances, 2018, 1(5).[81] Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al. Helical-Wave-Front Laser-Beams Produced with a Spiral Phaseplate [J]. Optics Communications, 1994, 112(5-6) : 321-327.[82] Turnbull G A, Robertson D A, Smith G M, et al. Generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate [J]. Optics Communications, 1996, 127(4-6) : 183-188.[83] Oemrawsingh S S, Van Houwelingen J A, Eliel E R, et al. Production and characterization of spiral phase plates for optical wavelengths [J]. Appl Opt, 2004, 43(3) : 688-694.[84] Sueda K, Miyaji G, Miyanaga N, et al. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses [J]. Optics Express, 2004, 12(15) : 3548-3553.[85] Massari M, Ruffato G, Gintoli M, et al. Fabrication and characterization of high-quality spiral phase plates for optical applications [J]. Applied Optics, 2015, 54(13) : 4077-4083.[86] Rafighdoost J, Sabatyan A. Spirally phase-shifted zone plate for generating and manipulating multiple spiral beams [J]. Journal of the Optical Society of America B-Optical Physics, 2017, 34(3) : 608-612.[87] Zhao Z, Wang J, Li S, et al. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams [J]. Optics Letters, 2013, 38(6) : 932-934.[88] Karimi E, Schulz S A, De Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface [J]. Light-Science & Applications, 2014, 3(5) : e167.[89] Du J, Wang J J R. Design of On-Chip N-Fold Orbital Angular Momentum Multicasting Using V-Shaped Antenna Array [J]. 2015, 5: 9662.[90] Ma Z, Li Y, Li Y, et al. All-dielectric planar chiral metasurface with gradient geometric phase [J]. Optics Express, 2018, 26(5) : 6067-6078.[91] Wang W, Li Y, Guo Z, et al. Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation [J]. Journal of Optics, 2015, 17: 045102.[92] Zhao Y, Du J, Zhang J, et al. Generating structured light with phase helix and intensity helix using reflection-enhanced plasmonic metasurface at 2 μ m [J]. Applied Physics Letters, 2018, 112: 171103.[93] Du J, Wang J. Dielectric metasurfaces enabling twisted light generation/detection/(de)multiplexing for data information transfer [J]. Optics Express, 2018, 26(10) : 13183-13194.[94] Beijersbergen M W, Allen L, Vanderveen H E L O, et al. Astigmatic Laser Mode Converters and Transfer of Orbital Angular-Momentum [J]. Optics Communications, 1993, 96(1-3) : 123-132.[95] Inavalli V V G K, Viswanathan N K. Switchable vector vortex beam generation using an optical fiber [J]. Optics Communications, 2010, 283(6) : 861-864.[96] Yan Y, Wang J, Zhang L, et al. Fiber coupler for generating orbital angular momentum modes [J]. Optics Letters, 2011, 36(21) : 4269-4271.[97] Yan Y, Yue Y, Huang H, et al. Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs [J]. Optics Letters, 2012, 37(17) : 3645-3647.[98] Li S, Mo Q, Hu X, et al. Controllable all-fiber orbital angular momentum mode converter [J]. Optics Letters, 2015, 40(18) : 4376-4379.[99] Yan Y, Zhang L, Wang J, et al. Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes [J]. Optics Letters, 2012, 37(16) : 3294-3296.[100] Fang L, Wang J. Flexible generation/conversion/exchange of fiber-guided orbital angular momentum modes using helical gratings [J]. Optics Letters, 2015, 40(17) : 4010-4013.[101] Karimi E, Piccirillo B, Nagali E, et al. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates [J]. Applied Physics Letters, 2009, 94(23) : 299.[102] Marrucci L, Karimi E, Slussarenko S, et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications [J]. Journal of Optics, 2011, 13(6) : 064001.[103] Cardano F, Karimi E, Slussarenko S, et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges [J]. Appl Opt, 2012, 51(10) : C1-6.[104] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles [J]. Optics Letters, 1986, 11(5) : 288.[105] Friese M, Nieminen T A, Heckenberg N R, et al. Optical alignment and spinning of laser-trapped microscopic particles [J]. Nature, 1998, 394(6691) : p.348-350.[106] O'neil A T, Macvicar I, Allen L, et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam [J]. Phys Rev Lett, 2002, 88(5) : 053601.[107] Simpson N B, Dholakia K, Allen L, et al. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner [J]. Optics Letters, 1997, 22(1) : 52-54.[108] Grier D G. A revolution in optical manipulation [J]. Nature, 2003, 424(6950) : 810-816.[109] Davis J A, Mcnamara D E, Cottrell D M, et al. Image processing with the radial Hilbert transform: theory and experiments [J]. Optics Letters, 2000, 25(2) : 99-101.[110] Jesacher A, Furhapter S, Bernet S, et al. Shadow effects in spiral phase contrast microscopy [J]. Phys Rev Lett, 2005, 94(23) : 233902.[111] B.Jack, J.Leach, J.Romero, et al. Holographic Ghost Imaging and the Violation of a Bell Inequality [J]. Physical Review Letters, 2009, 103(8) : 83602-83602.[112] Padgett M, Courtial J, Allen L. Light's orbital angular momentum [J]. Physics Today, 2004, 57(5) : 35-40.[113] Franke-Arnold S, Allen L, Padgett M J L, et al. Advances in optical angular momentum [J]. 2010, 2(4) : 299-313.[114] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications [J]. Advances in Optics and Photonics, 2011, 3(2) : 161-204.[115] Wang J. Advances in communications using optical vortices [J]. Photonics Research, 2016, 4(5) : B14-B28.[116] Krenn M, Handsteiner J, Fink M, et al. Twisted photon entanglement through turbulent air across Vienna [J]. Proc Natl Acad Sci USA, 2015, 112(46) : 14197-14201.[117] Erhard M, Fickler R, Krenn M, et al. Twisted photons: new quantum perspectives in high dimensions [J]. Light Sci Appl, 2018, 7: 17146.[118] Wang J. Twisted optical communications using orbital angular momentum [J]. Science China Physics, Mechanics & Astronomy, 2018, 62(3).[119] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing [J]. Nature Photonics, 2012, 6(7) : 488-496.[120] Huang H, Xie G, Yan Y, et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength [J]. Optics Letters, 2014, 39(2) : 197-200.[121] Wang J, Li S, Luo M, et al. N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes [C]. 2014 The European Conference on Optical Communication (ECOC), 2014: 1-3.[122] Ren Y, Wang Z, Liao P, et al. Experimental characterization of a 400Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m [J]. Optics Letters, 2016, 41(3) : 622.[123] Zhao Y, Liu J, Jing D, et al. Experimental Demonstration of 260-meter Security Free-Space Optical Data Transmission Using 16-QAM Carrying Orbital Angular Momentum (OAM) Beams Multiplexing [C]. Optical Fiber Communications Conference & Exhibition, 2016: 1-3.[124] Krenn M, Handsteiner J, Fink M, et al. Twisted light transmission over 143 km [J]. Proc Natl Acad Sci U S A, 2016, 113(48) : 13648-13653.[125] Gopaul C, Andrews R. The effect of atmospheric turbulence on entangled orbital angular momentum states [J]. New Journal of Physics, 2007, 9(4) : 94.[126] Tyler G A, Boyd R W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum [J]. Optics Letters, 2009, 34(2) : 142-144.[127] Bruenner T, Roux F S. Robust entangled qutrit states in atmospheric turbulence [J]. New Journal of Physics, 2012, 15(6) : 345-351.[128] Alonso J R G, Brun T A. Protecting orbital-angular-momentum photons from decoherence in a turbulent atmosphere [J]. Physical Review A, 2013, 88(2) : -.[129] Ibrahim A H, Roux F S, Konrad T. Parameter dependence in the atmospheric decoherence of modally entangled photon pairs [J]. Physical Review A, 2014, 90(5).[130] Leonhard N D, Shatokhin V N, Buchleitner A. Universal entanglement decay of photonic orbital angular momentum qubit states in atmospheric turbulence [J]. Physical Review A, 2015, 91(1) : 12345-12345.[131] Pors B J, Monken C H, Eliel E R, et al. Transport of orbital-angular-momentum entanglement through a turbulent atmosphere [J]. Optics Express, 2011, 19(7) : 6671-6683.[132] Ibrahim A H, Roux F S, Mclaren M, et al. Orbital-angular-momentum entanglement in turbulence [J]. Physical Review A, 2013, 88(1) : 5706-5714.[133] Pereira M V D, Filpi L a P, Monken C H. Cancellation of atmospheric turbulence effects in entangled two-photon beams [J]. Physical Review A, 2013, 88(5) : 51-57.[134] Krenn M, Fickler R, Fink M, et al. Communication with spatially modulated light through turbulent air across Vienna [J]. New Journal of Physics, 2014, 16(11) : 113028.[135] Xie G, Li L, Ren Y, et al. Performance metrics and design considerations for a free-space optical orbital-angular-momentum–multiplexed communication link [J]. Optica, 2015, 2(4) : 357.[136] Zhong X, Zhao Y Q, Ren G H, et al. Influence of Finite Apertures on Orthogonality and Completeness of Laguerre-Gaussian Beams [J]. Ieee Access, 2018, 6: 8742-8754.[137] Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication [J]. Phys Rev Lett, 2005, 94(15) : 153901.[138] Malik M, O'sullivan M, Rodenburg B, et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding [J]. Optics Express, 2012, 20(12) : 13195-13200.[139] Ren Y, Huang H, Xie G, et al. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing [J]. Optics Letters, 2013, 38(20) : 4062-4065.[140] Ramachandran S, Kristensen P. Optical vortices in fiber [J]. Nanophotonics, 2013, 2(5-6) : 455-474.[141] Brunet C, Ung B, Bélanger P, et al. Vector Mode Analysis of Ring-Core Fibers: Design Tools for Spatial Division Multiplexing [J]. Journal of Lightwave Technology, 2014, 32(23) : 4648-4659.[142] Wang Z, Tu J J, Gao S C, et al. Transmission and Generation of Orbital ANGULAR Momentum Modes in Optical Fibers [J]. Photonics, 2021, 8(7).[143] Chen S, Liu J, Zhao Y, et al. Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber [J]. Scientific Reports, 2016, 6(1) : 38181.[144] Liu J, Li S, Du J, et al. Performance evaluation of analog signal transmission in an integrated optical vortex emitter to 3.6-km few-mode fiber system [J]. Optics Letters, 2016, 41(9) : 1969-1972.[145] Zhu L, Yang C, Xie D, et al. Demonstration of km-scale orbital angular momentum multiplexing transmission using 4-level pulse-amplitude modulation signals [J]. Optics Letters, 2017, 42(4) : 763-766.[146] Huang H, Milione G, Lavery M P J, et al. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre [J]. Scientific Reports, 2015, 5(1) : 14931.[147] Chen S, Wang J. Theoretical analyses on orbital angular momentum modes in conventional graded-index multimode fibre [J]. Scientific Reports, 2017, 7(1) : 3990.[148] Zhu L, Wang A, Chen S, et al. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber [J]. Optics Express, 2017, 25(21) : 25637-25645.[149] Wang A, Zhu L, Wang L, et al. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission [J]. Optics Express, 2018, 26(8) : 10038-10047.[150] Zhu L, Wang A, Chen S, et al. Orbital angular momentum mode multiplexed transmission in heterogeneous few-mode and multi-mode fiber network [J]. Optics Letters, 2018, 43(8) : 1894-1897.[151] Ramachandran S, Kristensen P, Yan M F. Generation and propagation of radially polarized beams in optical fibers [J]. Optics Letters, 2009, 34(16) : 2525-2527.[152] Zhang J, Zhu G, Liu J, et al. Orbital-angular-momentum mode-group multiplexed transmission over a graded-index ring-core fiber based on receive diversity and maximal ratio combining [J]. Optics Express, 2018, 26(4) : 4243-4257.[153] Jung Y, Kang Q, Zhou H, et al. Low-Loss 25.3 km Few-Mode Ring-Core Fiber for Mode-Division Multiplexed Transmission [J]. Journal of Lightwave Technology, 2017, 35(8) : 1363-1368.[154] Zhu G, Hu Z, Wu X, et al. Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes [J]. Optics Express, 2018, 26(2) : 594-604.[155] Gregg P, Kristensen P, Ramachandran S. 13.4km OAM state propagation by recirculating fiber loop [J]. Optics Express, 2016, 24(17) : 18938-18947.[156] Li S, Wang J. Multi-Orbital-Angular-Momentum Multi-Ring Fiber for High-Density Space-Division Multiplexing [J]. Ieee Photonics Journal, 2013, 5(5) : 7101007.[157] Li S, Wang J. A Compact Trench-Assisted Multi-Orbital-Angular-Momentum Multi-Ring Fiber for Ultrahigh-Density Space-Division Multiplexing (19 Rings × 22 Modes) [J]. Scientific Reports, 2014, 4(1) : 3853.[158] Ung B, Vaity P, Wang L, et al. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes [J]. Optics Express, 2014, 22(15) : 18044-18055.[159] Hu Z A, Huang Y Q, Luo A P, et al. Photonic crystal fiber for supporting 26 orbital angular momentum modes [J]. Optics Express, 2016, 24(15) : 17285-17291.[160] Li S, Wang J. Supermode fiber for orbital angular momentum (OAM) transmission [J]. Optics Express, 2015, 23(14) : 18736-18745.[161] Long Z, Wang A, Shi C, et al. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber [J]. Optics Express, 2017, 25(21) : 25637-25645.[162] Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers [J]. Science, 2013, 340(6140) : 1545-1548.[163] Ingerslev K, Gregg P, Galili M, et al. 12 mode, WDM, MIMO-free orbital angular momentum transmission [J]. Optics Express, 2018, 26(16) : 20225-20232.[164] Gregg P, Kristensen P, Golowich S E, et al. Stable Transmission of 12 OAM States in Air-Core Fiber [M]. CLEO: Science and Innovations 2013, CTu2K.2.[165] Zhu G, Hu Z, Xiong W, et al. Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes [J]. Optics Express, 2018, 26(2) : 594-604.[166] Zhu L, Zhu G, Wang A, et al. 18??km low-crosstalk OAM?+?WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation [J]. Optics Letters, 2018, 43(8) : 1890-1893.[167] Zhou W, Wang L, Shen L, et al. First demonstration of ultra-long-distance mode-division multiplexing transmission using orbital angular momentum (OAM) modes over 150-km low-loss ring-core fiber without amplifiers [C]. European Conference on Optical Communication, 2019: 216.[168] Zhang J, Liu J, Shen L, et al. Mode-division multiplexed transmission of wavelength-division multiplexing signals over a 100-km single-span orbital angular momentum fiber [J]. Photonics Research, 2020, 8(7) : 1236-1242.[169] Sit A, Fickler R, Alsaiari F, et al. Quantum cryptography with structured photons through a vortex fiber [J]. Optics Letters, 2018, 43(17) : 4108-4111.[170] Cozzolino D, Bacco D, Da Lio B, et al. Orbital Angular Momentum States Enabling Fiber-based High-dimensional Quantum Communication [J]. Physical Review Applied, 2019, 11(6).[171] Loeffler W, Euser T G, Eliel E R, et al. Fiber Transport of Spatially Entangled Photons [J]. Physical Review Letters, 2011, 106(24).[172] Kang Y, Ko J, Lee S M, et al. Measurement of the Entanglement between Photonic Spatial Modes in Optical Fibers [J]. Physical Review Letters, 2012, 109(2).[173] Cozzolino D, Polino E, Valeri M, et al. Air-core fiber distribution of hybrid vector vortex-polarization entangled states [J]. Advanced Photonics, 2019, 1(04).[174] Liu J, Nape I, Wang Q, et al. Multidimensional entanglement transport through single-mode fiber [J]. Science Advances, 2020, 6: eaay0837.[175] Cao H, Gao S-C, Zhang C, et al. Distribution of high-dimensional orbital angular momentum entanglement over a 1??km few-mode fiber [J]. Optica, 2020, 7(3).[176] Cozzolino D, Da Lio B, Bacco D, et al. High‐Dimensional Quantum Communication: Benefits, Progress, and Future Challenges [J]. Advanced Quantum Technologies, 2019, 2(12).[177] Baghdady J, Miller K, Morgan K, et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing [J]. Optics Express, 2016, 24(9) : 9794-9805.[178] Cheng M, Guo L, Li J, et al. Channel capacity of the OAM-based free-space optical communication links with Bessel-Gauss beams in turbulent ocean [J]. IEEE Photonics Journal, 2016, 8(1) : 1-1.[179] Ren Y, Li L, Wang Z, et al. Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications [J]. Sci Rep, 2016, 6: 33306.[180] Li Y, Cui Z, Han Y, et al. Channel capacity of orbital-angular-momentum-based wireless communication systems with partially coherent elegant Laguerre-Gaussian beams in oceanic turbulence [J]. J Opt Soc Am A Opt Image Sci Vis, 2019, 36(4) : 471-477.[181] Pan S, Wang L, Wang W, et al. An Effective Way for Simulating Oceanic Turbulence Channel on the Beam Carrying Orbital Angular Momentum [J]. Sci Rep, 2019, 9(1) : 14009.[182] Lanzagorta M. Underwater Communications [J]. Synthesis Lectures on Communications, 2012, 5(2) : 1-129.[183] Zhai S, Wang J, Zhu Y, et al. Quantum-channel capacity of distributing orbital-angular-momentum states for underwater optical quantum communication [J]. J Opt Soc Am A Opt Image Sci Vis, 2021, 38(1) : 36-41.[184] Fontaine N K, Ryf R, Chen H, et al. Laguerre-Gaussian mode sorter [J]. Nature Communications, 2019, 10(1) : 1865.[185] Chen S, Li S, Zhao Y, et al. Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation [J]. Optics Letters, 2016, 41(20) : 4680-4683.[186] Ren Y, Xie G, Huang H, et al. Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link [J]. Optica, 2014, 1(6) : 376-382.[187] Ren Y, Xie G, Huang H, et al. Turbulence compensation of an orbital angular momentum and polarization-multiplexed link using a data-carrying beacon on a separate wavelength [J]. Optics Letters, 2015, 40(10) : 2249-2252.[188] Fu S, Zhang S, Wang T, et al. Pre-turbulence compensation of orbital angular momentum beams based on a probe and the Gerchberg–Saxton algorithm [J]. Optics Letters, 2016, 41(14) : 3185-3188.[189] Winzer P J, Foschini G J. MIMO capacities and outage probabilities in spatially multiplexed optical transport systems [J]. Optics Express, 2011, 19(17) : 16680-16696.[190] Huang H, Cao Y, Xie G, et al. Crosstalk mitigation in a free-space orbital angular momentum multiplexed communication link using 4×4 MIMO equalization [J]. Optics Letters, 2014, 39(15) : 4360-4363.[191] Huang H, Cao Y, Xie G, et al. Crosstalk mitigation in a free-space orbital angular momentum multiplexed communication link using 4×4 MIMO equalization [J]. Optics Letters, 2014, 39(15) : 4360-4363.[192] Ren Y, Wang Z, Xie G, et al. Atmospheric turbulence mitigation in an OAM-based MIMO free-space optical link using spatial diversity combined with MIMO equalization [J]. Optics Letters, 2016, 41(11) : 2406-2409.[193] Zhang Y, Wang P, Liu T, et al. Performance analysis of a LDPC coded OAM-based UCA FSO system exploring linear equalization with channel estimation over atmospheric turbulence [J]. Optics Express, 2018, 26(17) : 22182-22196.[194] Labroille G, Denolle B, Jian P, et al. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion [J]. Optics Express, 2014, 22(13) : 15599-15607.[195] Song H, Song H, Zhang R, et al. Experimental Mitigation of Atmospheric Turbulence Effect Using Pre-Signal Combining for Uni- and Bi-Directional Free-Space Optical Links With Two 100-Gbit/s OAM-Multiplexed Channels [J]. Journal of Lightwave Technology, 2020, 38(1) : 82-89.[196] Willner A E, Liu C. Perspective on using multiple orbital-angular-momentum beams for enhanced capacity in free-space optical communication links [J]. Nanophotonics, 2020, 10(1) : 225-233.[197] Valencia N H, Goel S, Mccutcheon W, et al. Unscrambling entanglement through a complex medium [J]. Nature Physics, 2020, 16(11) : 1112-1116.[198] Hu X-M, Zhang C, Guo Y, et al. Pathways for Entanglement-Based Quantum Communication in the Face of High Noise [J]. Physical Review Letters, 2021, 127(11).[199] Hu X M, Huang C X, Sheng Y B, et al. Long-Distance Entanglement Purification for Quantum Communication [J]. Phys Rev Lett, 2021, 126(1) : 010503.[200] Bi F, Ba Z, Wang X. Metasurface-based broadband orbital angular momentum generator in millimeter wave region [J]. Optics Express, 2018, 26(20) : 25693-25705.[201] Huang S, Song X, Gao X, et al. Analog radio of fiber link of 2-Gbaud OOK/BPSK radio frequency-orbital angular momentum beam transmission over 19.4 km [J]. Optics Express, 2021, 29(2) : 2124-2134.[202] Liu C, Wei X, Niu L, et al. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer [J]. Optics Express, 2016, 24(12) : 12534-12541.[203] Li H, Ren G, Zhu B, et al. Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers [J]. Optics Letters, 2017, 42(2) : 179-182. |
[1] | 陈骊颖, 黄堃, 王琪, 闫仕农 . 基于金刚石NV色心集成振动检测模块的设计[J]. 量子电子学报, 2023, 40(4): 500-509. |
[2] | 摆海龙, 白金海, 胡栋, 王宇. 用于原子干涉重力仪的小型频率合成器设计与实现[J]. 量子电子学报, 2023, 40(4): 510-518. |
[3] | 李嵩松. 玻色-爱因斯坦凝聚体中三体和四体相互作用对自旋压缩和量子纠缠的影响研究[J]. 量子电子学报, 2023, 40(4): 519-527. |
[4] | 李艳, . 一维强相互作用的玻色-费米混合气体 关联特性研究[J]. 量子电子学报, 2023, 40(4): 528-540. |
[5] | 王晟, 方晓明, 林昱, 张天兵, 冯宝, 余杨, 王乐 . 四强度诱骗态相位匹配量子密钥分发协议[J]. 量子电子学报, 2023, 40(4): 541-545. |
[6] | 孙一石, 孙弋 . 基于BP 神经网络的经典-量子信号共纤同传系统参数预测[J]. 量子电子学报, 2023, 40(4): 546-559. |
[7] | 戚志明, 梁文耀 . 光束偏振对全息干涉制作复式光子晶体的影响研究[J]. 量子电子学报, 2023, 40(4): 447-457. |
[8] | 贾 玮 , 张强强 , 卞宇翔 , 李 威 . E91-QKD 中集体攻击上限的研究[J]. 量子电子学报, 2023, 40(3): 407-414. |
[9] | 曹 睿 , 袁晨智 , 沈 思 , 张子昌 , 范云茹 , 李加睿 , 李 浩 , 尤立星 , 周 强 , 王子竹∗. 三维时间片最大纠缠态的最优检测[J]. 量子电子学报, 2023, 40(1): 85-94. |
[10] | 何业锋, 李丽娜∗, 白 倩, 陈思昊, 强雨薇 . 标记单光子源下探测器死时间的量子密钥分配[J]. 量子电子学报, 2023, 40(1): 112-119. |
[11] | 谈志杰 杨海瑞 喻虹 韩申生. X光强度关联衍射成像技术研究进展[J]. 量子电子学报, 2022, 39(6): 851-862. |
[12] | 林惠祖 刘伟涛 孙帅 杜隆坤 常宸 李月刚. 关联成像算法研究进展[J]. 量子电子学报, 2022, 39(6): 863-879. |
[13] | 王孝艳, 王志远, 陈子阳, 蒲继雄∗. 基于深度学习技术从散斑场中识别 多涡旋结构的轨道角动量[J]. 量子电子学报, 2022, 39(6): 955-961. |
[14] | 李能菲 孙宇松 黄见. 余弦编码复用高空间分辨率关联成像研究[J]. 量子电子学报, 2022, 39(6): 973-982. |
[15] | 陈荣泉∗, 陈源福, 王 清, 吴志钢. 离轴多涡旋-高斯光束在负折射率 介质中的传输特性[J]. 量子电子学报, 2022, 39(5): 795-805. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||