量子电子学报 ›› 2022, Vol. 39 ›› Issue (1): 64-80.doi: 10.3969/j.issn.1007-5461.2022.01.004
• "轨道角动量:从经典光学到量子信息”专辑 • 上一篇 下一篇
王纺翔1,2 , 陈 巍1,2∗
收稿日期:
2021-10-19
修回日期:
2021-12-09
出版日期:
2022-01-28
发布日期:
2022-01-28
通讯作者:
陈巍
E-mail:weich@ustc.edu.cn
基金资助:
WANG Fangxiang 1,2 , CHEN Wei 1,2∗
Received:
2021-10-19
Revised:
2021-12-09
Published:
2022-01-28
Online:
2022-01-28
Contact:
Wei Chen
E-mail:weich@ustc.edu.cn
Supported by:
摘要: 信息安全是国家核心竞争力的重要组成部分, 量子密钥分发 (QKD) 利用量子力学基本原理对信息实现 计算复杂度无关的安全加密, 是下一代信息安全技术的重要选项。经过三十多年的发展, 以结合诱骗态的 BB84 协议为代表的 QKD 方案已经非常成熟, 并逐渐开始了规模化部署。持续探索基础方案和核心技术是推动 QKD 发展的基础动力。在单回合通信中, 基于高维量子态编码的高维 QKD (HD-QKD) 技术具有更高的信息承载效 率和更强的抗噪声能力, 因而具有重要的发展和应用潜力,已成为当前 QKD 领域的重要研究方向之一。光子 的轨道角动量 (OAM) 自由度原则上具有无穷维希尔伯特空间, 是实现 HD-QKD 的重要物理资源。重点回顾了 基于 OAM 光子态的 HD-QKD 的发展历程, 梳理并讨论了该研究方向的主要技术成果和面临的关键技术问题, 并展望其未来发展趋势。
中图分类号:
王纺翔, 陈 巍, ∗. 综述: 基于轨道角动量光子态的 高维量子密钥分发[J]. 量子电子学报, 2022, 39(1): 64-80.
WANG Fangxiang , , CHEN Wei , ∗. High-dimensional quantum key distribution based on orbital angular momentum photons: A review[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 64-80.
[1] GISIN N, RIBORDY G, TITTEL W et al. Quantum cryptography[J]. Reviews of Modern Physics, 2002, 74(1): 145–195. [2] BENNETT C H, BRASSARD G. Quantum cryptography: Public key distribution and coin tossing[J]. Theoretical Computer Science, 2014, 560: 7–11. [3] SCARANI V, BECHMANN-PASQUINUCCI H, CERF N J et al. The security of practical quantum key distribution[J]. Reviews of Modern Physics, 2009, 81(3): 1301–1350. [4] CHEN W, HAN Z-F, ZHANG T et al. Field Experiment on a “Star Type” Metropolitan Quantum Key Distribution Network[J]. IEEE Photonics Technology Letters, 2009, 21(9): 575–577. [5] WANG S, CHEN W, YIN Z-Q et al. Field and long-term demonstration of a wide area quantum key distribution network[J]. Optics Express, 2014, 22(18): 21739–21756. [6] SASAKI M, FUJIWARA M, ISHIZUKA H et al. Field test of quantum key distribution in the Tokyo QKD Network[J]. Optics Express, 2011, 19(11): 10387–10409.[7] PEEV M, PACHER C, ALLéAUME R et al. The SECOQC quantum key distribution network in Vienna[J]. New Journal of Physics, 2009, 11: 075001.[8] COURTLAND R. China’s 2000-km quantum link is almost complete[J]. IEEE Spectrum, 2016, 53: 11–12. [9] BECHMANN-PASQUINUCCI H, TITTEL W. Quantum Cryptography using larger alphabets[J]. Physical Review A, 2000, 61(062308): 1–6. [10] CERF N J, BOURENNANE M, KARLSSON A et al. Security of quantum key distribution using d-level systems.[J]. Physical review letters, 2002, 88(12): 127902. [11] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. [12] PADGETT M J. Orbital angular momentum 25 years on[J]. Optics Express, 2017, 25(10): 11265. [13] WILLNER A E, LIU C. Perspective on using multiple orbital-angular-momentum beams for enhanced capacity in free-space optical communication links[J]. Nanophotonics, 2020, 10(1): 225–233. [14] ERHARD M, FICKLER R, KRENN M et al. Twisted photons: new quantum perspectives in high dimensions[J]. Light: Science & Applications, 2018, 7(3): 17146. [15] COZZOLINO D, DA LIO B, BACCO D et al. High‐Dimensional Quantum Communication: Benefits, Progress, and Future Challenges[J]. Advanced Quantum Technologies, 2019, 2(12): 1900038. [16] SIT A, BOUCHARD F, FICKLER R et al. High-dimensional intracity quantum cryptography with structured photons[J]. Optica, 2017, 4(9): 1006. [17] WANG F-X, CHEN W, YIN Z-Q et al. Characterizing High-Quality High-Dimensional Quantum Key Distribution by State Mapping Between Different Degrees of Freedom[J]. Physical Review Applied, 2019, 11(2): 024070.[18] WANG Q-K, WANG F-X, LIU J et al. High-Dimensional Quantum Cryptography with Hybrid Orbital-Angular-Momentum States through 25 km of Ring-Core Fiber: A Proof-of-Concept Demonstration[J]. Physical Review Applied, 2021, 15(6): 064034. [19] EKERT A K. Quantum cryptography based on Bell’s theorem[J]. Physical Review Letters, 1991, 67(6): 661–663. [20] BENNETT C H. Quantum cryptography using any two nonorthogonal states[J]. Physical Review Letters, 1992, 68(21): 3121–3124. [21] WANG X-B. Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography[J]. Physical Review Letters, 2005, 94(23): 230503. [22] LO H, MA X, CHEN K. Decoy State Quantum Key Distribution[J]. Physical Review Letters, 2005, 94(23): 230504.[23] SASAKI T, YAMAMOTO Y, KOASHI M. Practical quantum key distribution protocol without monitoring signal disturbance.[J]. Nature, 2014, 509(7501): 475–8. [24] LUCAMARINI M, YUAN Z L, DYNES J F et al. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters[J]. Nature, 2018, 557(7705): 400–403. [25] XU F, MA X, ZHANG Q et al. Secure quantum key distribution with realistic devices[J]. Reviews of Modern Physics, 2020, 92(2): 025002. [26] LIAO S-K, CAI W-Q, HANDSTEINER J et al. Satellite-Relayed Intercontinental Quantum Network_S[J]. Physical Review Letters, 2018, 120(3): 030501. [27] CHEN Y-A, ZHANG Q, CHEN T-Y et al. An integrated space-to-ground quantum communication network over 4,600 kilometres[J]. Nature, 2021, 589(7841):214-219.[28] ZHANG Q, XU F, CHEN Y-A et al. Large scale quantum key distribution: challenges and solutions [Invited][J]. Optics Express, 2018, 26(18): 24260. [29] SHERIDAN L, SCARANI V. Security proof for quantum key distribution using qudit systems[J]. Physical Review A, 2010, 82(3): 030301. [30] BRáDLER K, MIRHOSSEINI M, FICKLER R et al. Finite-key security analysis for multilevel quantum key distribution[J]. New Journal of Physics, 2016, 18(7): 073030. [31] WANG X-L, CAI X-D, SU Z-E et al. quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature, 2015, 518: 516–519. [32] WANG X L, LUO Y H, HUANG H L et al. 18-Qubit Entanglement with Six Photons’ Three Degrees of Freedom[J]. Physical Review Letters, 2018, 120(26): 260502. [33] ISLAM N T, LIM C C W, CAHALL C et al. Provably secure and high-rate quantum key distribution with time-bin qudits[J]. Science Advances, 2017, 3(11): e1701491. [34] LIU X, YAO X, WANG H et al. Energy-time entanglement-based dispersive optics quantum key distribution over optical fibers of 20 km[J]. Applied Physics Letters, 2019, 114(14): 141104. [35] DING Y, BACCO D, DALGAARD K et al. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits[J]. npj Quantum Information, 2017, 3(1): 25. [36] SHOR P W, PRESKILL J. Simple Proof of Security of the BB84 Quantum Key Distribution Protocol[J]. Physical Review Letters, 2000, 85(2): 441–444. [37] BRASSARD G, LüTKENHAUS N, MOR T et al. Limitations on practical quantum cryptography[J]. Physical Review Letters, 2000, 85(6): 1330–1333. [38] LüTKENHAUS N. Security against individual attacks for realistic quantum key distribution[J]. Physical Review A, 2000, 61(5): 052304. [39] GOTTESMAN D, LO H, NORBERT L et al. Security of Quantum Key Distribution with Imperfect Devices[C]//Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on, IEEE.[40] HWANG W-Y. Quantum Key Distribution with High Loss: Toward Global Secure Communication[J]. Physical Review Letters, 2003, 91(5): 057901. [41] MA X, QI B, ZHAO Y et al. Practical decoy state for quantum key distribution[J]. Physical Review A, 2005, 72(1): 012326. [42] BOARON A, BOSO G, RUSCA D et al. Secure Quantum Key Distribution over 421 km of Optical Fiber[J]. Physical Review Letters, 2018, 121(19): 190502. [43] BECHMANN-PASQUINUCCI H, PERES A. Quantum cryptography with 3-state systems[J]. Physical Review Letters, 2000, 85(15): 3313–3316. [44] RENNER R. Security of quantum key distribution[J]. International Journal of Quantum Information, 2008, 6(1): 1–127. [45] YUEN H P. Security of Quantum Key Distribution[J]. IEEE Access, 2016, 4(01): 724–749. [46] SCARANI V, RENNER R. Quantum Cryptography with Finite Resources: Unconditional Security Bound for Discrete-Variable Protocols with One-Way Postprocessing[J]. Physical Review Letters, 2008, 100(20): 200501. [47] TOMAMICHEL M, RENNER R. Uncertainty Relation for Smooth Entropies[J]. Physical Review Letters, 2011, 106(11): 110506. [48] TOMAMICHEL M, LIM C C W, GISIN N et al. Tight finite-key analysis for quantum cryptography[J]. Nature Communications, 2012, 3(1): 634. [49] LIM C C W, CURTY M, WALENTA N et al. Concise security bounds for practical decoy-state quantum key distribution[J]. Physical Review A, 2014, 89(2): 022307. [50] ZHANG Z, ZHAO Q, RAZAVI M et al. Improved key-rate bounds for practical decoy-state quantum-key-distribution systems[J]. Physical Review A, 2017, 95(1): 012333. [51] RUSCA D, BOARON A, GRüNENFELDER F et al. Finite-key analysis for the 1-decoy state QKD protocol[J]. Applied Physics Letters, 2018, 112(17): 171104. [52] MAIR A, VAZIRI A, WEIHS G et al. Entanglement of the orbital angular momentum states of photons.[J]. Nature, 2001, 412(6844): 313–316.[53] PADGETT M J, ALLEN L. The Poynting vector in Laguerre-Gaussian laser modes[J]. Optics Communications, 1995, 121(1–3): 36–40. [54] LEACH J, YAO E, PADGETT M J. Observation of the vortex structure of a non-integer vortex beam[J]. New Journal of Physics, 2004, 6: 71. [55] GIOVANNINI D, ROMERO J, POTO?EK V et al. Spatially structured photons that travel in free space slower than the speed of light[J]. Science, 2015, 347(6224): 857–860. [56] ZHOU Z-Y, ZHU Z-H, LIU S-L et al. Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality[J]. Science Bulletin, 2017, 62(17): 1185–1192. [57] ROGER T, LYONS A, WESTERBERG N et al. How fast is a twisted photon?[J]. Optica, 2018, 5(6): 682-686. [58] YAO A M, PADGETT M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161. [59] SHEN Y, WANG X, XIE Z et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science and Applications, 2019, 8(1): 90. [60] WILLNER A E, HUANG H, YAN Y et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66. [61] PADGETT M, BOWMAN R. Tweezers with a twist[J]. Nature Photonics, 2011, 5(May): 343–348.[62] GRIER D G. A revolution in optical manipulation.[J]. Nature, 2003, 424(6950): 810–816. [63] LI F, XU T, ZHANG W et al. Optical images rotation and reflection with engineered orbital angular momentum spectrum[J]. Applied Physics Letters, 2018, 113(16): 161109.[64] DING D-S, ZHANG W, ZHOU Z-Y et al. Quantum Storage of Orbital Angular Momentum Entanglement in an Atomic Ensemble[J]. Physical Review Letters, 2015, 114(5): 050502. [65] TANG J S, ZHOU Z Q, WANG Y T et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory[J]. Nature Communications, 2015, 6(1): 8652. [66] LAVERY M P J, SPEIRITS F C, BARNETT S M et al. Detection of a Spinning Object Using Light’s Orbital Angular Momentum[J]. Science, 2013, 341(6145): 537–540. [67] D’AMBROSIO V, SPAGNOLO N, DEL RE L et al. Photonic polarization gears for ultra-sensitive angular measurements[J]. Nature Communications, 2013, 4(1): 2432. [68] CHEN L, LEI J, ROMERO J. Quantum digital spiral imaging[J]. Light: Science & Applications, 2014, 3(3): e153.[69] LEE C, BUNANDAR D, ZHANG Z et al. Large-alphabet encoding for higher-rate quantum key distribution[J]. Optics Express, 2019, 27(13): 17539.[70] RAMACHANDRAN S, KRISTENSEN P, YAN M F. Generation and propagation of radially polarized beams in optical fibers[J]. Optics Letters, 2009, 34(16): 2525. [71] OH K, CHOI S, JUNG Y et al. Novel hollow optical fibers and their applications in photonic devices for optical communications[J]. Journal of Lightwave Technology, 2005, 23(2): 524–532. [72] SAMPSELL J B. Spatial Light Modulator[P]. United States Patent, 4954789, 1990-09-04, 1990. [73] Bozler C O, Rade S. Spatial Light Modulator [P]. United States Patent, 5784189, 1998-07-21, 1998.[74] LEDDY M, BOYSEL M, DELONG J A et al. Digital micro-mirror based image simulation system[P]. United States Patent, 5457493, 1995-10-10, 1995.[75] DUDLEY D, DUNCAN W M, SLAUGHTER J. Emerging digital micromirror device (DMD) applications[J]. MOEMS Display and Imaging Systems, 2003, 4985(January 2003): 14. [76] FICKLER R, LAPKIEWICZ R, PLICK W N et al. Quantum Entanglement of High Angular Momenta[J]. Science, 2012, 338(6107): 640–643.[77] MARRUCCI L, MANZO C, PAPARO D. Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media[J]. Physical Review Letters, 2006, 96(16): 163905. [78] RUBANO A, CARDANO F, PICCIRILLO B et al. Q-plate technology: a progress review [Invited][J]. Journal of the Optical Society of America B, 2019, 36(5): D70. [79] NAIDOO D, ROUX F S, DUDLEY A et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nature Photonics, 2016, 10(5): 327–332. [80] JI W, LEE C-H, CHEN P et al. Meta-q-plate for complex beam shaping[J]. Scientific Reports, 2016, 6(1): 25528. [81] FORBES A, DE OLIVEIRA M, DENNIS M R. Structured light[Z]. Springer US, 2021: 253–262(2021–04–30). [82] BEIJERSBERGEN M W, COERWINKEL R P C, KRISTENSEN M et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 1994, 112(5–6): 321–327.[83] BERKHOUT G C G, LAVERY M P J, COURTIAL J et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 2010, 105(15): 153601. [84] LAVERY M P J, ROBERTSON D J, BERKHOUT G C G et al. Refractive elements for the measurement of the orbital angular momentum of a single photon.[J]. Optics express, 2012, 20(3): 2110[85] O’SULLIVAN M N, MIRHOSSEINI M, MALIK M et al. Near-perfect sorting of orbital angular momentum and angular position states of light[J]. Optics Express, 2012, 20(22): 24444. [86] MIRHOSSEINI M, MALIK M, SHI Z et al. Efficient separation of the orbital angular momentum eigenstates of light[J]. Nature Communications, 2013, 4: 2781. [87] WEN Y, CHREMMOS I, CHEN Y et al. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes[J]. Physical Review Letters, 2018, 120(19): 193904. [88] LEACH J, PADGETT M J, BARNETT S M et al. Measuring the Orbital Angular Momentum of a Single Photon[J]. Physical Review Letters, 2002, 88(25): 257901. [89] LEACH J, COURTIAL J, SKELDON K et al. Interferometric Methods to Measure Orbital and Spin, or the Total Angular Momentum of a Single Photon[J]. Physical Review Letters, 2004, 92(1): 013601. [90] ZHANG W, QI Q, ZHOU J et al. Mimicking Faraday Rotation to Sort the Orbital Angular Momentum of Light[J]. Physical Review Letters, 2014, 112(15): 153601. [91] ZHOU Y, MIRHOSSEINI M, FU D et al. Sorting Photons by Radial Quantum Number[J]. Physical Review Letters, 2017, 119(26): 263602. [92] GU X, KRENN M, ERHARD M et al. Gouy Phase Radial Mode Sorter for Light: Concepts and Experiments[J]. Physical Review Letters, 2018, 120(10): 103601. [93] SLUSSARENKO S, D’AMBROSIO V, PICCIRILLO B et al. The Polarizing Sagnac Interferometer: a tool for light orbital angular momentum sorting and spin-orbit photon processing[J]. Optics Express, 2010, 18(26): 27205–27216. [94] WANG F-X, CHEN W, LI Y-P et al. Single-path Sagnac interferometer with Dove prism for orbital-angular-momentum photon manipulation[J]. Optics Express, 2017, 25(21): 24946. [95] WANG F-X, WU J, CHEN W et al. Controlled-phase manipulation module for orbital-angular-momentum photon states[J]. Optics Letters, 2018, 43(2): 349. [96] WANG F-X, CHEN W, YIN Z-Q et al. Scalable orbital-angular-momentum sorting without destroying photon states[J]. Physical Review A, 2016, 94(3): 033847. [97] IONICIOIU R. Sorting quantum systems efficiently[J]. Scientific Reports, 2016, 6: 25356. [98] KRENN M, HANDSTEINER J, FINK M et al. Twisted light transmission over 143 km.[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 201612023. [99] KRENN M, HANDSTEINER J, FINK M et al. Twisted photon entanglement through turbulent air across Vienna[J]. Proceedings of the National Academy of Sciences, 2015, 112(46): 201517574. [100] BOZINOVIC N, GOLOWICH S, KRISTENSEN P et al. Control of orbital angular momentum of light with optical fibers[J]. Optics Letters, 2012, 37(13): 2451. [101] BOZINOVIC N, YUE Y, REN Y et al. Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers[J]. Science, 2013, 340(6140): 1545–1548. [102] GREGG P, KRISTENSEN P, RAMACHANDRAN S. Conservation of orbital angular momentum in air-core optical fibers[J]. Optica, 2015, 2(3): 267. [103] COZZOLINO D, BACCO D, DA LIO B et al. Orbital Angular Momentum States Enabling Fiber-based High-dimensional Quantum Communication[J]. Physical Review Applied, 2019, 11(6): 064058. DOI:10.1103/PhysRevApplied.11.064058.[104] GR?BLACHER S, JENNEWEIN T, VAZIRI A et al. Experimental quantum cryptography with qutrits[J]. New Journal of Physics, 2006, 8(5): 75.[105] MIRHOSSEINI M, MAGANA-LOAIZA O S, O'SULLIVAN M N et al. High-dimensional quantum cryptography with twisted light[J]. New Journal of Physics, 2015, 17(3): 033033. [106] HADFIELD R H. Single-photon detectors for optical quantum information applications[J]. Nature Photonics, 2009, 3(12): 696–705. [107] EISAMAN M D, FAN J, MIGDALL A et al. Invited Review Article: Single-photon sources and detectors[J]. Review of Scientific Instruments, 2011, 82(7): 071101. [108] MARRUCCI L, KARIMI E, SLUSSARENKO S et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications[J]. Journal of Optics, 2011, 13(6): 064001. [109] NDAGANO B, NAPE I, PEREZ-GARCIA Bet al. A deterministic detector for vector vortex states[J]. Scientific Reports, 2017, 7(1): 13882. [110] NAPE I, OTTE E, VALLéS A et al. Self-healing high-dimensional quantum key distribution using hybrid spin-orbit Bessel states[J]. Optics Express, 2018, 26(21): 26946. [111] MAFU M, DUDLEY A, GOYAL S et al. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases[J]. Physical Review A, 2013, 88(3): 032305.[112] BOUCHARD F, SIT A, HESHAMI K et al. Round-robin differential-phase-shift quantum key distribution with twisted photons[J]. Physical Review A, 2018, 98(1): 010301. [113] BOUCHARD F, SIT A, HUFNAGEL F et al. Quantum cryptography with twisted photons through an outdoor underwater channel[J]. Optics Express, 2018, 26(17): 22563. [114] BOUCHARD F, HESHAMI K, ENGLAND D et al. Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons[J]. Quantum, 2018, 2: 111. [115] BOUCHARD F, HUFNAGEL F, KOUTNY D et al. Quantum process tomography of a high-dimensional quantum communication channel[J]. Quantum, 2019, 3: 138. [116] ZHOU Y, MIRHOSSEINI M, OLIVER S et al. Using all transverse degrees of freedom in quantum communications based on a generic mode sorter[J]. Optics Express, 2019, 27(7): 10383. [117] ZHOU Y, ZHAO J, BRAVERMAN B et al. Multiprobe Time Reversal for High-Fidelity Vortex-Mode-Division Multiplexing over a Turbulent Free-Space Link[J]. Physical Review Applied, 2021, 15(3): 034011. [118] AROCQUE H U G O L, ISCHOFF J é G A, OMINIC D et al. Generalized optical angular momentum sorter and its application to high-dimensional quantum cryptography[J]. 2017, 25(17): 19832–19843.[119] NDAGANO B, NAPE I, COX M A et al. Creation and Detection of Vector Vortex Modes for Classical and Quantum Communication[J]. Journal of Lightwave Technology, 2018, 36(2): 292–301. |
[1] | 贾 玮 , 张强强 , 卞宇翔 , 李 威 . E91-QKD 中集体攻击上限的研究[J]. 量子电子学报, 2023, 40(3): 407-414. |
[2] | 曹 睿 , 袁晨智 , 沈 思 , 张子昌 , 范云茹 , 李加睿 , 李 浩 , 尤立星 , 周 强 , 王子竹∗. 三维时间片最大纠缠态的最优检测[J]. 量子电子学报, 2023, 40(1): 85-94. |
[3] | 王孝艳, 王志远, 陈子阳, 蒲继雄∗. 基于深度学习技术从散斑场中识别 多涡旋结构的轨道角动量[J]. 量子电子学报, 2022, 39(6): 955-961. |
[4] | 陈荣泉∗, 陈源福, 王 清, 吴志钢. 离轴多涡旋-高斯光束在负折射率 介质中的传输特性[J]. 量子电子学报, 2022, 39(5): 795-805. |
[5] | 赵良圆 曹凌云 梁洪源 韦峥 伍千军 钱建林 韩正甫. 基于不同光纤的波分复用型量子密钥分配研究[J]. 量子电子学报, 2022, 39(5): 776-785. |
[6] | 王形华, 陈荣泉∗, 王清. 强非局域介质中复宗量厄米-高斯型空间光孤子[J]. 量子电子学报, 2022, 39(3): 459-466. |
[7] | 吴希, 李志强∗. 基于 Cirq 的Grover 搜索算法的电路实现[J]. 量子电子学报, 2022, 39(3): 431-438. |
[8] | 戴娟∗, 李志强, 杨冬晗. 基于 Cirq 的Deutsch-Jozsa 电路综合算法[J]. 量子电子学报, 2022, 39(3): 439-445. |
[9] | 徐笑吟, 刘胜帅, 荆杰泰, ∗. 光学轨道角动量复用纠缠源的实验产生及其应用[J]. 量子电子学报, 2022, 39(2): 182-196. |
[10] | 孙亦凡, 陈天, 张卓, 孔令军, 张向东∗. 轨道角动量光束中的经典光关联及其应用研究[J]. 量子电子学报, 2022, 39(2): 197-224. |
[11] | 欧阳旭, 张明偲, 杨清帅, 曹耀宇, 徐毅, 李向平. 基于微纳结构的光子轨道角动量复用及检测进展[J]. 量子电子学报, 2022, 39(2): 251-261. |
[12] | 成科, 胡晓楠, 贺瑜, 孟维佳, 栾海涛, 顾敏, 方心远, . 基于光学衍射神经网络的完美涡旋光 轨道角动量识别[J]. 量子电子学报, 2022, 39(2): 262-271. |
[13] | 胡海峰, 詹其文∗. 基于光子轨道角动量的手性测量方法[J]. 量子电子学报, 2022, 39(2): 272-285. |
[14] | 贾俊亮, 张笑儒, 赵子丹, 张沛, ∗. 用旋转多普勒方法解析矢量涡旋光的偏振特征[J]. 量子电子学报, 2022, 39(2): 286-292. |
[15] | 徐 凯♯, 曹 洹, ♯, 张 超∗, 胡晓敏, 黄运锋∗, 柳必恒, 李传锋∗. 光子轨道角动量量子态传输研究进展[J]. 量子电子学报, 2022, 39(1): 3-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||