量子电子学报 ›› 2022, Vol. 39 ›› Issue (1): 50-63.doi: 10.3969/j.issn.1007-5461.2022.01.003
• "轨道角动量:从经典光学到量子信息”专辑 • 上一篇 下一篇
潘 婧1,2 , 王 豪1,2 , 付 星1,2 , 柳 强1,2∗
收稿日期:
2021-09-30
修回日期:
2021-10-29
出版日期:
2022-01-28
发布日期:
2022-01-28
通讯作者:
qiangliu@tsinghua.edu.cn
E-mail:E-mail: qiangliu@tsinghua.edu.cn
作者简介:
潘 婧 ( 1996 - ), 博士生, 主要从事复杂结构光的相关研究。 E-mail: pj18@mails.tsinghua.edu.cn
基金资助:
PAN Jing 1,2 , WANG Hao 1,2 , FU Xing 1,2 , LIU Qiang 1,2∗
Received:
2021-09-30
Revised:
2021-10-29
Published:
2022-01-28
Online:
2022-01-28
摘要: 艾里光束作为一种具有自加速特性的无衍射光束, 在光镊、光学成丝、成像、表面等离子激发等众多 领域都具有应用潜力。而在艾里光束基础上引入涡旋项可以丰富光场特性, 同时利用艾里光束特性与涡旋相位 特性为光场分布调谐提供了更大的灵活性, 也引入了更多的动力学演化特性。以直角坐标和极坐标系下艾里光 束的特性与应用为切入口, 系统介绍了各类艾里涡旋的参数调谐与演化特性, 包括直角坐标和极坐标系下单个艾里涡旋在各个情况下的演化特性、产生方式与应用, 以及直角坐标和极坐标系下的艾里涡旋叠加光束的奇特 性质等, 为系统了解艾里涡旋参数及动力学特性提供参考, 进而为产生具有更加丰富性质的光场打下基础, 对扩大艾里涡旋的实际应用领域具有指导意义。
中图分类号:
潘 婧, 王 豪, 付 星, 柳 强, ∗. 艾里涡旋及其衍生光场[J]. 量子电子学报, 2022, 39(1): 50-63.
PAN Jing , , WANG Hao , , FU Xing , , LIU Qiang , ∗. Airy vortex and its derived light field[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 50-63.
[1]Durnin J, Jr M J, Eberly J H.Diffraction-free beams[J].Physical Review Letters, 1987, 58(15):1499-1501 [2]JC Gutiérrez-Vega, MD Iturbe-Castillo, S Chávez-Cerda.Alternative formulation for invariant optical fields: Mathieu beams[J].Optics Letters, 2000, 25(20):1493-1495 [3]BERRY M V, BALAZS N L.Nonspreading wave packets[J].American Journal of Physics, 1979, 47(3):264-267 [4]RING, James D.et alAuto-focusing and self-healing of Pearcey beams[J].Optics Express, 2012, 20(17):18955-18966 [5]SIVILOGLOU G A, BROKY J, DOGARIU A, et al.Ballistic dynamics of Airy beams[J].Optics letters, 2008, 33(3):207-209 [6]J.Baumgartl, M. Mazilu, and K. Dholakia..Optically mediated particle clearing using Airy wavepackets.[J].Nat. Photon., 2008, 2:675-678 [7]Polynkin P, Kolesik M, Moloney J.Filamentation of Femtosecond Laser Airy Beams in Water[J].Physical Review Letters, 2009, 103(12):123902- [8]VETTENBURG, Tom, et al.Light-sheet microscopy using an Airy beam[J].Nature methods, 2014, 11(5):541-544 [9]MINOVICH, Alexander, et al.Generation and near-field imaging of Airy surface plasmons[J].Physical review letters, 2011, 107(11):116802- [10]PAPAZOGLOU, Dimitrios G.et alObservation of abruptly autofocusing waves[J].Optics letters, 2011, 36(10):1842-1844 [11]ZHANG, Peng, et al.Trapping and guiding microparticles with morphing autofocusing Airy beams[J].Optics letters, 2011, 36(15):2883-2885 [12]PANAGIOTOPOULOS, P.et alSharply autofocused ring-Airy beams transforming into non-linear intense light bullets[J].Nature communications, 2013, 4(1):1-6 [13]RUBINSZTEIN-DUNLOP, Halina, et al.Roadmap on structured light[J].Journal of Optics, 2016, 19(1):013001- [14]SHEN, Yijie, et al.Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J].Light: Science & Applications, 2019, 8(1):1-29 [15]Wang J, Yang J Y, Fazal I M, et al.Terabit free-space data transmission employing orbital angular momentum multiplexing[J].NATURE PHOTONICS, 2012, 6(7):488-496 [16]Jian, Wang.Advances in communications using optical vortices[J].Photonics Research, 2016, 4(5):B14-B28 [17]Padgett M, Bowman R.Tweezers with a twist[J].Nature Photonics, 2011, 5(6):343-348 [18]MAIR, Alois, et al.Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412.6844: 313-316. [19]Fang X, Ren H, Gu M.Orbital angular momentum holography for high-security encryption[J].Nature Photonics, 2020, 14(2):102-108 [20] Mazilu M, Baumgartl J, T Cizmár, et al.Accelerating vortices in Airy beams[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2009, 7430. [21]Dai H T, Liu Y J, Luo D, et al.Propagation dynamics of an optical vortex imposed on an Airy beam[J].Optics Letters, 2010, 35(23):4075-4077 [22]Efremidis, Nikolaos K.et alAiry beams and accelerating waves: an overview of recent advances[J].Optica, 2019, 6(5):686-701 [23] K.Unnikrishnan and A. R. P. Rau. Uniqueness of the Airy packet in quantum mechanics[J]. Am. J. Phys., 1996, 64:1034–1035. [24]Siviloglou G A, Christodoulides D N.Accelerating finite energy Airy beams[J].Optics Letters, 2007, 32(8):979-981 [25] G.A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides. Observation of accelerating Airy beams[J]. Phys. Rev. Lett., 2007, 99: 213901. [26]Ze, Cai, Ya, et al.Continuous cubic phase microplates for generating high-quality Airy beams with strong deflection[J].Optics Letters, 2017, 42(13):2483-2486 [27]Polynkin P, Kolesik M, Moloney J V, et al.Curved Plasma Channel Generation Using Ultraintense Airy Beams[J].Science, 2009, 324(5924):229-232 [28]Papazoglou, D.G.,et alTunable intense Airy beams and tailored femtosecond laser filaments[J].Physical Review A, 2010, 81(6):061807- [29]Yalizay, Berna, Burak Soylu, and Selcuk Akturk.Optical element for generation of accelerating Airy beams[J].JOSA A, 2010, 27(10):2344-2346 [30]Hao, Weiming, Jian Wang, and Lin Chen.Compact broadband silicon-integrated Airy beam emitter[J].Optics Letters, 2021, 46(17):4084-4087 [31]Yi H, Zhang P, Lou C, et al.Optimal control of the ballistic motion of Airy beams[J].Optics Letters, 2010, 35(13):2260- [32]G.A. Siviloglou,JBroky,A. Dogariu,and D. N. Christodoulides. Ballistic dynamics of Airy beams[J].Optics Letters, 2008, 33(3):207-209 [33]Broky J, Siviloglou G A, Dogariu A, et al.Self-healing properties of optical Airy beams[J].Optics Express, 2008, 16(17):12880-12891 [34]Zhang, Ping, et al.Unveiling the Link between Airy-Like Self-Acceleration and Diametric Drive Acceleration[J].Physical Review Letters, 2021, 127(8):083901- [35]Liang Y, Yi H, Ye Z, et al.Dynamical deformed Airy beams with arbitrary angles between two wings[J].Journal of the Optical Society of America A, 2014, 31(7):1468-1472 [36]Qian Y, Zhang S.Quasi-Airy beams along tunable propagation trajectories and directions[J].Optics Express, 2016, 24(9):9489-9500 [37]Vaveliuk P, Lencina A, Rodrigo J A, et al.Symmetric Airy beams[J].Optics Letters, 2014, 39(8):2370-2373 [38]Z.X. Fang,Y-X. Ren,L. Gong,P. Vaveliuk,Y. Chen,and R.-D. Lu. Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus[J].J. Appl. Phys., 2015, 118(20):203102- [39]Chremmos I, Zhang P, Prakash J, et al.Fourier-space generation of abruptly autofocusing beams and optical bottle beams[J].Optics letters, 2011, 36(18):3675- [40]王爱.Airy光束实验实现及圆形Airy光束突然自聚焦性质研究[D]. 浙江大学, 2015. [41]Wei, Bing-Yan, et al.Generation of self-healing and transverse accelerating optical vortices[J].Applied Physics Letters, 2016, 109(12):121105- [42]Zhou L, Zhou T, Wang F, et al.Realization and measurement of Airy transform of Gaussian vortex beams[J].Optics & Laser Technology, 2021, 143(21):107334- [43]Chen R P, Zhong L X, Wu Q, et al.Propagation properties and M-2 factors of a vortex Airy beam[J].Optics & Laser Technology, 2012, 44(7):2015-2019 [44]Gao, Mingsheng, et al.Goos-H?nchen and Imbert-Fedorov shifts of off-axis Airy vortex beams[J].Optics Express, 2020, 28(20):28916-28923 [45]Cheng K, Zhong X, Xiang A .Propagation dynamics, Poynting vector and accelerating vortices of a focused Airy vortex beam[J]. Optics & Laser Technology, 2014, 57:77-83. [46]Chen R P, Chew K H.Far-field properties of a vortex Airy beam[J].Laser & Particle Beams, 2013, 31(01):9-15 [47]Dai H T, Liu Y J, Luo D, et al.Propagation properties of an optical vortex carried by an Airy beam: experimental implementation[J].Optics Letters, 2011, 36(9):1617-9 [48]Wei B Y, Liu S, Chen P, et al.Vortex Airy beams directly generated via liquid crystal q-Airy-plates[J].Applied Physics Letters, 2018, 112(12):121101- [49]Vyas, Sunil, Yu Hsin Chia, and Yuan Luo.Conventional volume holography for unconventional Airy beam shapes[J].Optics express, 2018, 26(17):21979-21991 [50]Zhou J, Liu Y, Ke Y, et al.Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases[J].Optics Letters, 2015, 40(13):3193- [51]Singh B K, Remez R, Tsur Y, et al.Measurement of acceleration and orbital angular momentum of Airy beam and Airy-vortex beam by astigmatic transformation[J].Optics Letters, 2015, 40(22):5411- [52] Phase singularities and energy fluxes of a noncanonical vortex dipole Airy beam in the far field[J].Journal of Modern Optics, 2015, 62(17):1-10. [53]Fang Z X, Chen Y, Ren Y X, et al.Interplay between topological phase and self-acceleration in a vortex symmetric Airy beam[J].Optics Express, 2018, 26(6):7324- [54]Xu, Chuangjie, You Wu, and Dongmei Deng.Multioptical bottles from second-order chirped symmetric Airy vortex beams[J].Optics Letters, 2020, 45(13):3502-3505 [55]Chen, Yingkang, et al.Propagation dynamics of deformed 2D vortex Airy beams[J]. Chinese Optics Letters. 2017, 15(8): 080801. [56]Wu, Yunlong, Li Shao, and Jinsong Nie.Evolution dynamics of vortex quasi-Airy beams[J].JOSA B, 2018, 35(5):972-979 [57]Han, Kun, et al." Propagation properties of the accelerating beams generated by discrete Airy-Vortex phase mask." Journal of Physics: Conference Series. Vol. 867. No. 1. IOP Publishing, 2017. [58] Han K, Ji K, Li S, et al.Observation of the composite Airy-like accelerating beams generated by the discrete vortex-cubic phase masks[J]. Optik - International Journal for Light and Electron Optics, 2017, 157. [59]Paraxial Propagation of the Second-order Airy Vortex Beams in the Free Space[C]// 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE).2018. [60]Zhong W P, et al.Three-dimensional localized Airy-Laguerre-Gaussian wave packets in free space[J].Optics Express, 2015, 23(18):23867- [61]Deng F, D Deng.Three-dimensional localized Airy-Hermite-Gaussian and Airy-Helical-Hermite-Gaussian wave packets in free space[J].Optics Express, 2016, 24(5):5478- [62]Peng Y, Chen B, Peng X, et al.Self-accelerating Airy-Ince-Gaussian and Airy-Helical-Ince-Gaussian light bullets in free space[J].Optics Express, 2016, 24(17):18973- [63]Fu D, Zhang Z, Huang J, et al.Self-decelerating Airy–elegant-Hermite–Gaussian and Airy–helical-elegant-Hermite–Gaussian wave packets[J].Journal of the Optical Society of America B Optical Physics, 2016, 33(11):2204-2208 [64]X.Huang, Q. Cao, H. Li, P. Li, C. Wan, and A. Chong, Generation of Versatile Vortex Linear Light Bullet, in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper JTu5A.11. [65]Li H, Huang X, Cao Q, et al.Generation of three-dimensional versatile vortex linear light bullets (Invited Paper)[J]. Chin. Opt. Lett., 2017(15):33-36. [66]Spatiotemporal controllable Airy–Airy-vortex light bullets in free space[J].Laser Physics Letters, 2017, 14(12):126001. [67]Zhuang J, Deng D, Chen X, et al.Spatiotemporal sharply autofocused dual-Airy-ring Airy Gaussian vortex wave packets[J].Optics Letters, 2018, 43(2):222- [68]Shi, Zhiwei, et al.Propagation of an Airy-Gaussian beam in defected photonic lattices[J].Applied Physics B, 2017, 123(5):159- [69]Yang, Qian, et al.Propagation of the radially polarized Airy vortex beams in uniaxial crystals orthogonal to the optical axis[J].JOSA A, 2019, 36(6):994-1002 [70]Zhang J, Zhou K, Liang J, et al.Nonparaxial propagation of the Chirped Airy vortex beams in uniaxial crystal orthogonasl to the optical axis[J].Optics Express, 2018, 26(2):1290- [71]Chen, Rui-Pin, Khian-Hooi Chew, and Sailing He.Dynamic control of collapse in a vortex Airy beam[J].Scientific reports, 2013, 3(1):1-9 [72]Yang, Xiao-Jin, Zhen-Sen Wu, and Tan Qu.Paraxial propagation of cosh-Airy vortex beams in chiral medium[J].Chinese Physics B, 2020, 29(3):34201- [73]Wu, Lican, et al.Airy vortex electron plasma wave[J].Physics of Plasmas, 2019, 26(9):092111- [74]Wu, Lican, et al.Propagation properties of the chirped Airy–Gaussian vortex electron plasma wave[J].Chinese Physics B, 2020, v.29(12):441-449 [75]Wang X, Yang Z, Zhao S .Influence of oceanic turbulence on propagation of Airy vortex beam carrying orbital angular momentum[J]. Optik, 2018, 176:49-55. [76]Davis J A, Cottrell D M, D Sand.Abruptly autofocusing vortex beams[J].Optics Express, 2012, 20(12):13302- [77]Chen B, Chen C, Peng X, et al.Propagation of sharply autofocused ring Airy Gaussian vortex beams[J].Optics Express, 2015, 23(15):19288- [78]Qiu Song, Ren Y .Observation of the rotational Doppler shift of the ring Airy Gaussian vortex beam[J]. Optics Communications, 2021, 490: 126900. [79]Zhang X, Zhao J, Li P, et al.Autofocusing of ring Airy beams embedded with off-axial vortex singularities[J].Optics Express, 2020, 28(6):7953-7960 [80]Davis J A, Cottrell D M, Zinn J M.Direct generation of abruptly focusing vortex beams using a 32 radial phase-only pattern[J].Applied Optics, 2013, 52(9):1888-1891 [81]Chen M, Huang S, Shao W, et al.Experimental study on the propagation characteristics of ring Airy Gaussian vortex beams[J].Applied physics B, 2017, b123(8):215- [82]Zhi D, Tao R, Zhou P, et al.Propagation of ring Airy Gaussian beams with optical vortices through anisotropic non-Kolmogorov turbulence[J]. Optics Communications, 2017, 387:157-165. [83] Chen M, Huang S, Wei S .Tight focusing of radially polarized circular Airy vortex beams[J]. Optics Communications, 2017, 402:672-677. [84]Xie W, Zhang P, Wang H, et al.Propagation of a vortex elliptical Airy beam[J]. Optics Communications, 2018, 427:288-293. [85]Cao B, Shen D, Qiu Z, et al.Characteristics of elliptical Airy beam with circular concentric vortex and its realization[J].Journal of the Optical Society of America A, 2020, 37(12):1883-1887 [86]Xu, Chuangjie.Circular symmetric Airy beam[J]. Optics Communications, 2020, 475: 126190. [87]Guo K, J Xie, Chen G, et al.Abruptly autofocusing properties of the chirped circular Airy Gaussian vortex beams[J]. Optics Communications, 2020:126369. [88]Peng L, Liu S, Tao P, et al.Spiral autofocusing Airy beams carrying power-exponent-phase vortices[J].Optics Express, 2014, 22(7):7598-7606 [89]Huang X, Shi X, Deng Z, et al.Effects of a modulated vortex structure on the diffraction dynamics of ring Airy Gaussian beams[J].Journal of the Optical Society of America A, 2017, 34(9):1720- [90]Wu Y, Lin Z, Xu C, et al.Off-Axis and Multi Optical Bottles from the Ring Airy Gaussian Vortex Beam with the Astigmatic Phase[J]. Annalen der Physik, 2020:2000188. [91]PORFIREV, A.P.; FOMCHENKOV, S. A.; KHONINA, S. N. Experimental investigation of complex circular Airy beam characteristics. In: Saratov Fall Meeting 2017: Laser Physics and Photonics XVIII; and Computational Biophysics and Analysis of Biomedical Data IV. International Society for Optics and Photonics, 2018. p. 107170Q. [92]Xu Y, Guo L, Cheng M, et al.Controlling abruptly autofocusing vortex beams to mitigate crosstalk and vortex splitting in free-space optical communication[J].Optics Express, 2018, 26(10):12605- [93]X Yan, L Guo, M Cheng, et al.Free-space propagation of autofocusing Airy vortex beams with controllable intensity gradients[J].Chinese Optics Letters, 2019, 17(4):040101- [94]Liu, Changming, et al.Terahertz circular Airy vortex beams[J].Scientific reports, 2017, 7(1):1-8 [95] Chen M, Huang S, Wei S, et al.Optical force and torque on a dielectric Rayleigh particle by a circular Airy vortex beam[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 208: 101-107. [96]Chen M, Huang S, Liu X, et al.Optical trapping and rotating of micro-particles using the circular Airy vortex beams[J].Applied Physics B, 2019, 125(10):1-6 [97]Izdebskaya Y V, Lu T H, Neshev D N, et al.Dynamics of three-Airy beams carrying optical vortices[J].Applied Optics, 2014, 53(10):B248-B253 [98]Xu Y, Guo L, Cheng M, et al.Controlling abruptly autofocusing vortex beams to mitigate crosstalk and vortex splitting in free-space optical communication[J].Optics Express, 2018, 26(10):12605- [99]Jin L, Li H, Zhao C, et al.Generation of Airy vortex beam arrays using computer-generated holography[J].Journal of the Optical Society of America A, 2019, 36(7):1215- [100]Zhang, Xiao-Hong, et al.Three-Airy autofocusing beams[J].Chinese Physics B, 2020, 29(6):064204- [101] Suarez R a B, Neves A a R, Gesualdi M R R.Generation and characterization of an array of Airy-vortex beams [J]. Optics Communications, 2020, 458:124846. [102]Cheng K, Jiao L, Zhong X .A comparison of far-field properties of radial noncanonical vortex airy beam arrays and radial noncanonical vortex Gaussian beam arrays[J]. Optics Communications, 2016, 367:112-122. [103]Qian Y, Shi Y, Jin W, et al.Annular arrayed-Airy beams carrying vortex arrays[J].Optics Express, 2019, 27(13):18085-93 [104]Jiang Y, Huang K, Lu X.Propagation dynamics of abruptly autofocusing Airy beams with optical vortices[J].Optics Express, 2012, 20(17):18579-84 [105]Jiang Y, Zhao S, Yu W, et al.Abruptly autofocusing property of circular Airy vortex beams with different initial launch angles[J].Journal of the Optical Society of America A, 2018, 35(6):890- [106]Wang D, Jin L, Carmelo Rosales-Guzmán, et al.Generating arbitrary arrays of circular Airy Gaussian vortex beams with a single digital hologram[J].Applied Physics B, 2021, 127(2):1-5 [107]Brimis A, Makris K G, Papazoglou D G.Tornado waves[J].Optics Letters, 2020, 45(2):280-3 |
[1] | 王孝艳, 王志远, 陈子阳, 蒲继雄∗. 基于深度学习技术从散斑场中识别 多涡旋结构的轨道角动量[J]. 量子电子学报, 2022, 39(6): 955-961. |
[2] | 陈荣泉∗, 陈源福, 王 清, 吴志钢. 离轴多涡旋-高斯光束在负折射率 介质中的传输特性[J]. 量子电子学报, 2022, 39(5): 795-805. |
[3] | 王形华, 陈荣泉∗, 王清. 强非局域介质中复宗量厄米-高斯型空间光孤子[J]. 量子电子学报, 2022, 39(3): 459-466. |
[4] | 姜其畅∗, 张存, 苏艳丽, 孙悦, 马紫微. 平顶光束在不同系统中的传输特性比较[J]. 量子电子学报, 2022, 39(3): 334-342. |
[5] | 徐笑吟, 刘胜帅, 荆杰泰, ∗. 光学轨道角动量复用纠缠源的实验产生及其应用[J]. 量子电子学报, 2022, 39(2): 182-196. |
[6] | 孙亦凡, 陈天, 张卓, 孔令军, 张向东∗. 轨道角动量光束中的经典光关联及其应用研究[J]. 量子电子学报, 2022, 39(2): 197-224. |
[7] | 欧阳旭, 张明偲, 杨清帅, 曹耀宇, 徐毅, 李向平. 基于微纳结构的光子轨道角动量复用及检测进展[J]. 量子电子学报, 2022, 39(2): 251-261. |
[8] | 成科, 胡晓楠, 贺瑜, 孟维佳, 栾海涛, 顾敏, 方心远, . 基于光学衍射神经网络的完美涡旋光 轨道角动量识别[J]. 量子电子学报, 2022, 39(2): 262-271. |
[9] | 胡海峰, 詹其文∗. 基于光子轨道角动量的手性测量方法[J]. 量子电子学报, 2022, 39(2): 272-285. |
[10] | 徐 凯♯, 曹 洹, ♯, 张 超∗, 胡晓敏, 黄运锋∗, 柳必恒, 李传锋∗. 光子轨道角动量量子态传输研究进展[J]. 量子电子学报, 2022, 39(1): 3-31. |
[11] | 周志远∗, 史保森∗. 轨道角动量光束非线性转换研究进展[J]. 量子电子学报, 2022, 39(1): 32-49. |
[12] | 王纺翔, 陈 巍, ∗. 综述: 基于轨道角动量光子态的 高维量子密钥分发[J]. 量子电子学报, 2022, 39(1): 64-80. |
[13] | 吴一京, 余盼盼, 刘易凡, 王自强, 李银妹, 龚 雷, ∗. 聚焦场自旋-轨道角动量相互作用的研究进展[J]. 量子电子学报, 2022, 39(1): 81-95. |
[14] | 茹世浩, 王 啸, 王云龙, 王斐然, 刘瑞丰, 张 沛, 李福利, ∗. 光子轨道角动量的量子操控与应用[J]. 量子电子学报, 2022, 39(1): 96-109. |
[15] | 樊海豪, 朱刘昊, 台玉萍, 李新忠, ∗. 高阶衍射级光束的轨道角动量[J]. 量子电子学报, 2022, 39(1): 127-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||