[1] Siegman A.E.. New developments in laser resonators[J]. SPIE 1990, 2C14: 1224.
[2] Siegman A.E.. How to(maybe) measure laser beam quality[J]. OSA Tops. 1998, 17: 184-199.
[3] Martinez-Herrero R., Mejias P.M.. Second-order spatial characterization of hard-edge diffracted beams[J]. Opt. Lett. 1993, 18(19): 1669-1671.
[4] R.Martinez-Herrero, P.M.Mejias and M. Arias. Parametric characterization of coherent, lowest-order Gaussian beams propagating through hard-edged apertures[J]. Opt. Lett. 1995, 20(2): 124-126 [5] Cheng Yong, Sun Bing, Wang xiaobing. Novel Approach to Laser Beam Quality and Stability[J]. Chinese Journal of Quantum Electionics (量子电子学报),1999, 16(3): 217-220(in Chinese)
[6] Santarsiero M., Gori F. Spreading properties of beams radiated by partially coherent Schell-model sources[J]. J. Opt. Soc. Am. A. 1999, 16(1): 106-112.
[7] Zhang B., Chu X., Li Q.. Generalized beam-propagation factor of partially coherent beams propagating through hard-edged apertures[J]. J. Opt. Soc. Am. A. 2002, 19(7): 1370-1375.
[8] Kang Xiaoping, Baida. of nonparaxial truncated cosh-Gaussian beams[J]. Chinese Journal of Quantum Electionics (量子电子学报),2005,22(6): 851-854. (in Chinese)
[9] Belanger P. A.. Beam quality factor of the LP01 mode of the step-index fiber[J]. Opt. Eng. 1993, 32: 2107-2109.
[10] Al-Rashed A.R., Saleh B.E.A.. Decentered Gaussian beams[J]. Appl. Opt. 1995, 34(30): 6819-6825.
[11] Palma C., Decentered Gaussian beams. ray bundles, and Bessel–Gauss beams[J]. Appl. Opt. 1997, 36(6): 1116-1120.
[12] Strohschein J.D., Seguin H.J.J., Capjack C.E.. Beam propagation constants for a radial laser array[J]. Appl. Opt. 1998, 37: 1045-1048.
[13] Cai Y., Chen Y. et al. Propagation of laser array beams in a turbulent atmosphere. Appl. Phys. B. 2007, 88: 467-475.
[14] Cai Y., Lin Q.. Decentered elliptical Gaussian beam[J]. Appl. Opt. 2002, 41(21): 4336-4340.
[15] Cai Y., Lin Q.. Decentered elliptical Hermite-Gaussian beam[J]. J. Opt. Soc. Am. A . 2003, 20(6): 1111-1119.
[16] Marti-Lopez L., Mendoza-Yero O., Dirckx J.J.J.. Incoherent superposition of off-axis polychromatic Hermite–Gaussian modes[J]. J. Opt. Soc. Am. A . 2002, 19(8): 1572-1582.
[17] Zhou Pu , Liu Zejin, et al. Propagation of coherently combined flattened laser beam array in turbulent atmosphere[J]. Optics & Laser Technology. 2009, 41: 403-407.
[18] Cai Yangjian , Lin Qiang, et al. Off-axis Gaussian Schell-model beam and partially coherent laser array beam in a turbulent atmosphere[J]. Opt. Commun. 2007 , 278: 157-167.
[19] Lin Q., Wang S., Alda J., Bernabeu E.. Transformation of nonsymmetric Gaussian beam into symmetric one by means of tensor ABCD law[J]. Optik. 1990, 85: 67-72.
[20] Shen Meixiao , Wang Shaomin. Decentered elliptical flattened Gaussian beam[J]. Opt. Commun. 2004 , 240: 245-252 .
[21] Wu Guohua, Lou Qihong, et al. Beam combination of a radial laser array: Flat-topped beam. Optics & Laser Technology. 2008, 40: 890-894.
[22] Mei Zhangrong, Zhao Daomu. Decentered controllable elliptical dark-hollow beams[J]. Opt. Commun. 2006, 259: 415-423.
[23] Baida,Ma Hong. Beam propagation properties of radial laser arrays[J]. J. Opt. Soc. Am. A. 2000, 17(11): 2005-2009.
[24] Baida,Ma Hong. Coherent and incoherent combinations of off-axis Gaussian beams with rectangular symmetry[J]. Opt. Commun. 1999 ,171: 185-194.
[25] Mahdieh M. H.. Numerical approach to laser beam propagation through turbulent atmosphere and evaluation of beam quality factor[J]. Opt. Commun. 2008, 281: 3395-3402.
[26] Dan Y., Zhang B.. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere[J]. Opt. Express. 2008, 16(20): 15563-15575.
[27] Dan Y., Zhang B.. Second moments of partially coherent beams in a atmosphereic turbulence[J]. Opt. Lett. 2009, 34(5): 563-565.
[28] Ji Xiaoling, Baida. Turbulence-induced quality degradation of partially coherent beams[J]. Opt. Commun. 2005, 251: 231-236.
[29] Yuan Yangsheng, Cai Yangjian, Qu Jun, et al. propagation factor of coherent and partially coherent dark hollow beams in turbulent atmosphere. [J].Opt. Express, 2009, 17(20): 17344-17356. [30] Andrews L.C., Phillips R.L., Hopen C.Y.. Laser Beam Scintillation with Applications[M]. SPIE Press, Washington, 2001.
[31] Andrews L.C., Phillips R.L.. Laser Beam Propagation Through Random Media[M]. SPIE Bellingham, Washington, 1998.
[32] Bastiaans M. J.. Application of the Winger distribution function to partially coherent light[J]. J. Opt. Soc. Am. A. 1986, 3: 1227-1238.
[33] Serna J., Martínez-Herrero R., andMejías P. M.. Parametric characterization of general partially coherent beams propagating through ABCD optical systems[J]. J. Opt. Soc. Am. A. 1991, 8(7): 1094-1098.
[34] R. Martínez-Herrero, G. Piquero, and P. M. Mejías. On the propagation of the kurtosis parameter of general beams[J]. Opt. Commun. 1995, 115: 225-232.
[35] Bracewell R. N.. The Fourier Transform and Its Application[M]. 2nd ed. (McGraw-Hill, New York, 1986).
[36] Hill R. J. and Clifford S. F.. Modified spectrum of atmospheric temperature fluctuations and its application to optical propagation[J]. J. Opt. Soc. Am. 1978, 68: 892-899. |