J4 ›› 2014, Vol. 31 ›› Issue (4): 477-488.
• 《量子电子学报》创刊三十周年纪念专辑 • 上一篇 下一篇
徐学哲,赵卫雄,董美丽,顾学军,胡长进,盖艳波,高晓明,黄 伟,张为俊
出版日期:
2014-07-28
发布日期:
2014-07-30
通讯作者:
张为俊(1962-),男,安徽人,研究员,博士生导师,从事环境光谱学研究。E-mail: wjzhang@aiofm.ac.cn
作者简介:
徐学哲(1989-),男,安徽人,硕士研究生,从事气溶胶光学特性研究。E-mail: ad09xxz@126.com
基金资助:
XU Xue-zhe, ZHAO Wei-xiong, DONG Mei-li, GU Xue-jun, HU Chang-jin, GAI Yan-bo, GAO Xiao-ming, HUANG Wei, ZHANG Wei-jun
Published:
2014-07-28
Online:
2014-07-30
摘要: 腔增强/衰荡吸收光谱技术,是目前应用最广泛的气溶胶光学特性原位测量方法之一,由于其原位、实时特性,测量过程中气溶胶状态不会发生改变,测量具有代表性,近些年来已经开始作为各种仪器综合比对实验中使用的参考标准。在经过近30年的发展后,相关技术发展日益成熟。本文将对腔增强/衰荡吸收光谱技术的发展及其在气溶胶光学特性测量方面的应用研究做简要的回顾。
中图分类号:
徐学哲,赵卫雄,董美丽,顾学军,胡长进,盖艳波,高晓明,黄 伟,张为俊. 腔增强/衰荡光谱应用于气溶胶消光检测研究进展[J]. J4, 2014, 31(4): 477-488.
XU Xue-zhe, ZHAO Wei-xiong, DONG Mei-li, GU Xue-jun, HU Chang-jin, GAI Yan-bo, GAO Xiao-ming, HUANG Wei, ZHANG Wei-jun . Monitoring Aerosol Extinction with Cavity Enhanced/Ring-Down Spectroscopy : A Brief Review[J]. J4, 2014, 31(4): 477-488.
[1] Tang X Y, Zhang Y H, Shao M. Atmospheric Environmental Chemistry(大气环境化学)[M]. Beijing: Higher Education Press, 2006. 268-290 (in Chinese). [2] Dong Meili. Broadband Cavity Enhanced Absorption Spectroscopy for trace gases and aerosol optical properties measurement(宽带腔增强吸收光谱技术应用于痕量气体及气溶胶光学特性测量)[D]. Hefei: Doctorial Dissertation of Hefei Institutes of Physical Science, Chinese Academy of Sciences, 2013 (in Chinese). [3] Sun Jingqun. The relationship between visibility and relative humidity [J]. Acta Meteorologica Sinica(气象学报),1985, 43(2): 230-234 (in Chinese). [4] Schnaiter M, Schmid O, Petzold A, et al. Measurement of wavelength-resolved light absorption by aerosols utilizing a UV-VIS extinction cell [J]. Aerosol. Sci. Tech., 2005, 39(3): 249-260. [5] Smith J D , Atkinson D B. A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol [J]. Analyst., 2001, 126(8): 1216-1220. [6] Thompson J E, Smith B W, Winefordner J D. Monitoring atmospheric particulate matter through cavity ring-down spectroscopy [J]. Anal. Chem., 2002, 74(9): 1962-1967. [7] Thompson J E, Nasajpour H D, Smith B W, Winefordner J D. Atmospheric aerosol measurements by cavity ringdown turbidimetry [J]. Aerosol. Sci. Tech., 2003, 37(3): 221-230. [8] Bulatov V, Fisher M, Schechter I. Aerosol analysis by cavity-ring-down laser spectroscopy [J]. Anal. Chim. Acta., 2002, 466(1): 1-9. [9] Strawa A W, Castaneda R, Owano T, Baer D S , Paldus B A. The measurement of aerosol optical properties using continuous wave cavity ring-down techniques [J]. J. Atmos. Ocean. Tech., 2003, 20(4): 454-465. [10] Pettersson A, Lovejoy E R, Brock C A, Brown S S, Ravishankara A R. Measurement of aerosol optical extinction at with pulsed cavity ring down spectroscopy [J]. J. Aerosol. Sci., 2004, 35(8): 995-1011. [11] Moosmuller H, Varma R, Arnott W P. Cavity ring-down and cavity-enhanced detection techniques for the measurement of aerosol extinction [J]. Aerosol. Sci. Tech., 2005, 39(1): 30-39. [12] Massoli P, Murphy D M, Lack D A, Baynard T, Brock C A, Lovejoy E R. Uncertainty in light scattering measurements by TSI nephelometer: Results from laboratory studies and implications for ambient measurements [J]. Aerosol. Sci. Tech., 2009, 43(11): 1064-1074. [13] Zhao Weixiong. Integrated Cavity Output Spectroscopy and its Application(积分腔输出光谱技术及其应用研究)[D]. Hefei: Doctorial Dissertation of Hefei Institutes of Physical Science, Chinese Academy of Sciences, 2008 (in Chinese). [14] Pei Shixin. The Study of Cavity Enhanced Absorption Spectroscopy and its Application(腔增强吸收光谱技术与应用研究)[D]. Hefei: Doctorial Dissertation of Hefei Institutes of Physical Science, Chinese Academy of Sciences, 2005 (in Chinese). [15] Scherer J J, Paul J B, O’Keefe A, Saykally R J. Cavity Ring down Laser Absorption Spectroscopy: History, Development, and Application to Pulsed Molecular Beams [J].Chem. Rev., 1997, 97(1):25 – 51. [16] Berden G, Peeters R, Meijer G. Cavity ring-down spectroscopy: Experimental schemes and applications [J].Int. Rev. Phys. Chem., 2000, 19(4):565 – 607. [17] Brown S S. Absorption spectroscopy in high-finesse cavities for atmospheric studies [J]. Chem. Rev. , 2003, 103(12):5219 – 5238. [18] Atkinson D B. Solving chemical problems of environmental importance using cavity ring-down spectroscopy [J].Analyst ., 2003, 128(2):117 – 125. [19] Mazurenka M, Orr-Ewing A J, Peverall R, Ritchie G A D. Cavity ring-down and cavity enhanced spectroscopy using diode lasers [J].Annu. Rep. Prog. Chem., Sect. C: Phys.Chem., 2005, 101(1):100 – 142. [20] Paldus B A, Kachanov A A. An historical overview of cavity-enhanced methods [J]. Can. J. Phys., 2005, 83(10):975 – 999. [21] Vallance C. Innovations in cavity ring down spectroscopy [J]. New J. Chem., 2005, 29(7):867 – 874. [22] Ball S M, Jones R L. Broad-band cavity ring-down spectroscopy [J]. Chem. Rev., 2003, 103(12):5239 – 5262. [23] O’Keefe A, Deacon D A G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources [J]. Rev. Sci. Instrum. ,1988, 59(12): 2544 [24] Engeln R, Meijer G. A Fourier transform cavity ring down spectrometer [J]. Rev. Sci. Instrum.,1996, 67(8):2708 . [25] Engeln R, Bierden G, Van den Berg E, Meijer G. Polarization dependent cavity ring down spectroscopy [J]. J. Chem. Phys., 1997, 107(12):4458. [26] Crosson E R, Haar P, Marcus G A, Schwettman H A, Paldus B A, Spence T G, Zare R N. Pulse-stacked cavity ring-down spectroscopy [J]. Rev. Sci. Instrum., 1999, 70(1):4. [27] Meijer G, Boogaarts M G H , Jongma R T, Parker D H, Wodtke A M. Coherent cavity ring down spectroscopy [J].Chem. Phys. Lett., 1994, 217(1-2):112-116. [28] Engeln R, Van den Berg E, Meijer G, Lin L, Knippels G M H, Van der Meer A F G. Cavity ring down spectrocopy with a free-electron laser [J]. Chem. Phys. Lett., 1997, 269(3): 293-297. [29] Xie J, Paldus B A , Wahl E H, Martin J, Owano T G, Kruger C H, Harris J S , Zare R N. Near-infrared cavity ringdown spectroscopy of water vapor in an atmospheric flame [J]. Chem. Phys. Lett., 284(5-6): 387-395. [30] Sneep M, Hannemann S, van Duijn E J, Ubachs W. Deep-ultraviolet cavity ringdown spectroscopy [J].Opt. Lett., 29(12): 1378-1380. [31] Kulp T J, Bisson S E, Bambha R P, Reichardt T A, Goers U B, Aniolek K W, Kliner D A V, Richman B A, Armstrong K M, Sommers R, Schmitt R, Powers P E, Levi O, Pinguet T, Fejer M, Koplow J P, Goldberg L, McRae T G. The application of quasi-phase-matched parametric light sources to practical infrared chemical sensing systems [J]. Appl. Phys. B., 2002, 75(2-3): 317-327. [32] Brown S S, Stark H , Ravishankara A R. Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO3) [J]. Appl. Phys. B., 2002, 75(2-3): 173-182. [33] Wheeler M D, Orr-Ewing A J, Ashfold M N R, Ishiwata T. Predissociation lifetimes of the A2Σ+ v = 1 state of the SH radical determined by cavity ring-down spectroscopy [J]. Chem. Phys. Lett., 1997, 268(5-6): 421-428. [34] Ito F, Nakanaga T. Photodissociation of methyl iodide clusters in the A-band excitation: Photofragmentation excitation spectra of (CH3I)n by ultraviolet pump-CRD probe measurement [J]. J. Chem. Phys., 2003, 119(11): 5527-5533. [35] Zhu L, Ding C -F. Temperature dependence of the near UV absorption spectra and photolysis products of ethyl nitrate [J]. Chem. Phys. Lett., 1997, 265(1-2): 177-184. [36] Kotterer M, Maier J P. Electronic spectrum of C6H: 2Π-X 2Π in the gas-phase detected by cavity ringdown [J]. Chem. Phys. Lett., 1997, 266(3): 342-346. [37] Lehr L, Hering P. Quantitative nonlinear spectroscopy: a direct comparison of degenerate four-wave mixing with cavity ring-down spectroscopy applied to NaH. IEEE [J]. J. Quantum. Elect., 1997, 33(9): 1465-1473. [38] Schoemaecker Moreau C, Therssen E, Mercier X, Pauwels J F, Desgroux P. Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames [J]. Appl. Phys. B., 2004, 78(3-4): 485-492. [39] Shaw A M, Zare R N, Bennett C V, Kolner B H. Bounce by Bounce cavity ring-down spectroscopy: femtosecond temporal imaging [J].Chemphyschem., 2001, 2(2): 118-121. [40] Alexander A J. Reaction kinetics of nitrate radicals with terpenes in solution studied by cavity ring-down spectroscopy [J]. Chem. Phys. Lett., 2004, 393(1-3): 138-142. [41] Wang C, Mazzotti F J, Miller G P, Winstead C B. Isotopic measurements of uranium using inductively coupled plasma cavity ringdown spectroscopy [J]. Appl. Spectrosc., 2003, 57(9): 1167-1172. [42] Romanini D, Gambogi J, and Lehmann K K. International Symposium on Molecular Spectroscopy, Ohio State University, RH06. 1995. [43] Romanini D, Kachanov A A , Sadeghi N, Stoeckel F. CW cavity ring down spectroscopy [J]. Chem. Phys. Lett., 1997, 264(3-2):316-322. [44] Romanini D, Kachanov A A, Stoeckel F. Diode laser cavity ring down spectroscopy [J]. Chem. Phys. Lett. ,1997, 270(5-6):538 -545. [45] Paldus B A, Harris J S, Martin J, Xie J, Zare R N. Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization [J]. J. Appl. Phys., 1997, 82(7):3199. [46] Ramponi A J, Milanovich F P, Kan T, Deacon D. High sensitivity atmospheric transmission measurements using a cavity ringdown technique [J]. Appl. Opt., 1988, 27(22): 4606-4608. [47] Sappey A D, Hill E S, Settersten T, Linne M A. Fixed-frequency cavity ringdown diagnostic for atmospheric particulate matter [J]. Opt. Lett., 1988, 23(12): 954-956. [48] Vander Wal R L, Ticich T M. Cavity ringdown and Laser-induced incandescence measurements of soot [J]. Appl. Opt., 1999, 38(9): 1444-1451. [49] Moosmüller H, Varma R, Arnott W P. Cavity ring-down and cavity-enhanced detection techniques for the measurement of aerosol extinction [J]. Aerosol Sci. Technol., 2005, 39 (1), 30-39. [50] Mellon D, King S J, Kim J, Reid J P, Orr-Ewing A J. Measurements of extinction by aerosol particles in the near-infrared using continuous wave cavity ring-down spectroscopy [J]. J. Phys. Chem. A., 2011, 115 (5):774–783. [51] Kebabian P L, Robinson W A, and Freedman A. Optical extinction monitor using cw cavity enhanced detection [J]. Rev. Sci. Instrum., 2007, 78 (6):063102. [52] Massoli P, Kebabian P L, Onasch T B, Hills F B, Freedman A. Aerosol light extinction measurements by Cavity Attenuated Phase Shift (CAPS) spectroscopy: laboratory validation and field deployment of a compact aerosol particle extinction monitor [J]. Aerosol Sci. Technol., 2010, 44(6):428-435. [53] Abo Riziq A, Erlick C, Dinar E, Rudich Y. Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy [J]. Atmos. Chem. Phys., 2007, 7(6):1523-1536. [54] Lang-Yona N, Rudich Y, Segre E, Dinar E, Abo-Riziq A. Complex refractive indices of aerosols retrieved by continuous wave-cavity ring down aerosol spectrometer [J]. Anal. Chem., 2009, 81(5), 1762–1769. [55] Michel Flores J, Bar-Or R Z, Bluvshtein N, Abo-Riziq A, Kostinski A, Borrmann S, Koren I, Rudich Y. Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties [J].Atmos. Chem. Phys. , 2012, 12 (12):5511-5521. [56] Bluvshtein N, Flores J M, Abo Riziq A, Rudich Y. An approach for faster retrieval of aerosols’ complex refractive index using cavity ring-down spectroscopy [J]. Aerosol Sci. Technol., 2012, 46 (10):1140-1150. [57] Zhang R, Khalizov A F, Pagels J, Zhang D, Xue H, McMurry P H. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing [J]. Proc Natl Acad Sci., 2008, 105 (30):10291–10296. [58] Li L, Chen J M, Chen H, Yang X, Tang Y, Zhang R. Monitoring optical properties of aerosols with cavity ring-down spectroscopy [J].J. Aerosol Sci., 2011, 42(4):277-284. [59] Wang L, Wang W, Ge M. Extinction efficiencies of mixed aerosols measured by aerosol cavity ring down spectrometry [J]. Chinese Sci. Bulletin ., 2012, 57 (20): 2567-2573. [60] Engeln R, Berden G, Peeters R, Meijer G. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy [J]. Rev. Sci. Instrum., 1998, 69(11):3763 – 3769. [61] Hamers E, Schram D, Engeln R. Fourier transform phase shift cavity ring down spectroscopy [J].Chem. Phys. Lett., 2002, 365(3-4): 237-243. [62] Fiedler S E, Hese A, Ruth A A. Incoherent broad-band cavity-enhanced absorption spectroscopy [J].Chem. Phys. Lett., 2003, 371(1-3): 284-294. [63] Ball S M, Langridge J M , Jones R L. Broadband cavity enhanced absorption spectroscopy using light emitting diodes [J].Chem. Phys. Lett., 2004, 398(1-3): 68-74. [64] Langridge J M, Ball S M , Jones R L. A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes [J]. Analyst., 2006, 131(8): 916-922. [65] Langridge J M, Ball S M, Shillings A J L, Jones R L. A broadband absorption spectrometer using light emitting diode for ultrasensitive, in situ trace gas detection [J].Rev. Sci. Instrum., 2008, 79(12): 123110 . [66] Gherman T, Venables D S, Vaughan S, Orphal J, Ruth A A. Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: Application to HONO and NO2 [J].Environ. Sci. Technol., 2008, 42(3): 890-895. [67] Fiedler S E, Hese A, Ruth A A. Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids [J].Rev. Sci. Instrum., 2005, 76(2): 023107. [68] Chen J, Venables D S. A broadband optical cavity spectrometer for measuring weak near-ultraviolet absorption spectra of gases [J].Atmos. Meas. Tech., 2011, 4(3): 425-436. [69] Ruth A A, Orphal J, Fiedler S E. Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source [J]. Appl. Optics., 2007, 46(17): 3611-3616. [70] Thompson E J, Spangler D H. Tungsten source integrated cavity output spectroscopy for the determination of ambient atmospheric extinction coefficient [J]. Appl. Opt., 2006, 45(11): 2465-2473. [71] Triki M, Cermak P, Mejean G, Romanini D. Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis [J]. Appl. Phys. B., 2008, 91(1): 195-201. [72] Varma R M, Venables D S, Ruth A A, Heitmann U, Schlosser E, Dixneuf S. Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction [J]. Appl. Optics., 2009, 48(4): B159-B171. [73] Venables D S, Gherman T, Orphal J, Wenger J C, Ruth A A. High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy [J]. Environ. Sci. Technol., 2006, 40(21): 6758-6763. [74] Vaughan S, Gherman T, Ruth A A, Orphal J. Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I-2, IO and OIO [J]. Phys. Chem. Chem. Phys., 2008, 10(30): 4471-4477. [75] Meinen J, Thieser J, Platt U, Leisner T. Technical Note: Using a high finesse optical resonator to provide a long light path for differential optical absorption spectroscopy: CE-DOAS [J]. Atmos. Chem. Phys., 2010, 10(8): 3901-3914. [76] Wu Tao, Zhao Wei-xiong, Li Jin-song, et al. Incoherent broadband cavity enhanced absorption spectroscopy based on LED [J]. Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2008, 28(11): 2469 -2472 (in Chinese). [77] Wu T, Zhao W, Chen W, et al. Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode[J]. Applied Physics B, 2009, 94: 85-94. [78] Dong Mei-li, Zhao Wei-xiong, Cheng Yue, et al. Incoherent broadband cavity enhanced absorption spectroscopy for trace gases detection and aerosol extinction measurement [J]. Acta Physica Sinica(物理学报), 2012, 61(16): 060702 (in Chinese). [79] Zhao Wei-xiong, Dong Mei-li, Chen Wei-dong, etal. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445?480 nm [J]. Analytical Chemistry., 2013, 85(4): 2260?2268. [80] Dong Mei-li, Zhao Wei-xiong, Huang Ming-qiang, etal. Near-ultraviolet Incoherent Broadband Cavity Enhanced Absorption Spectroscopy for OClO and CH2O in Cl-initiated Photooxidation Experiment[J]. Chinese Journal Of Chemical Physics., 2013, 26(2): 133-139. [81] Dong Mei-li, Zhao Wei-xiong, Gu Xue-jun, etal. Incoherent broadband cavity enhanced absorption spectroscopy for NO2 detection and aerosol extinction measurement[C]. The twenty-ninth annual meeting of the China Meteorological Society, 2012(in Chinese). [82] Ling Liu-yi, Qin Min, Xie Pin-hua, etal. Incoherent broadband cavity enhanced absorption spectroscopy for measurements of HONO and NO2 with a LED pptical source[J]. Acta Physica Sinica(物理学报), 2012, 61(14):140703 (in Chinese). [83] Ling Liu-yi, Xie Pin-hua, Qin Min, etal. Open-path incoherent broadband cavity enhanced absorption spectroscopy for measurements of atmospheric NO2 [J]. Acta Optica Sinica(光学学报), 2013, 33(1): 0130002 (in Chinese). [84] Dong Lei. Research on polluted gas detection based on cavity enhanced absorption spectroscopy(基于腔增强吸收光谱的污染气体检测研究)[D]. Taiyuan: Doctorial Dissertation of Shanxi University, 2007 (in Chinese). [85] Lv Guo-wen.Study on in-situ detection system of pollution based on IBBCEAS(基于IBBCEAS的污染气体在线检测系统研究)[D]. Guangzhou:Master Thesis of South China University of Technolpgy, 2010 (in Chinese). [86] Thalman R, Volkamer R. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode [J]. Atmos. Meas. Tech., 2010, 3(6): 1797-1814. [87] Varma R M, Ball S M, Brauers T, Dorn H -P, Heitmann U, Jones R L, Platt U, P?hler D, Ruth A A, Shillings A J L, Thieser J, Wahner A, Venables D S. Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers [J]. Atmos. Meas. Tech., 2013, 6(11): 3115-3130. [88] Washenfelder R A, Flores J M, Brock C A, Brown S S, Rudich Y. Broadband measurements of aerosol extinction in the ultraviolet spectral region [J]. Atmos. Meas. Tech., 2013, 6(4): 861-877. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||