J4 ›› 2014, Vol. 31 ›› Issue (4): 449-458.
• 《量子电子学报》创刊三十周年纪念专辑 • 上一篇 下一篇
王金东,张智明
出版日期:
2014-07-28
发布日期:
2014-07-30
通讯作者:
张智明(1956-)博士,教授、博士生导师,主要研究领域为量子光学与量子信息。
E-mail:zmzhang@scnu.edu.cn
作者简介:
王金东,华南师范大学副教授,硕士生导师,主要研究领域:量子通信与量子光学,Email:wangjd@scnu.edu.cn
基金资助:
Wang Jindong,Zhang Zhiming
Published:
2014-07-28
Online:
2014-07-30
摘要: 量子密钥分发系统由于能够提供一种物理上安全的密钥分发方式,因此成为量子信息领域的研究热点,其中如何在现实条件下保证量子密钥分发的无条件安全性是该领域的一个重要研究课题。本文从经典保密通信系统中具有完善保密性的一次一密体制出发,介绍了量子密钥分发系统的应用模型和整体保密通信系统的安全性基础,以及自量子密钥分发协议被提出以来量子密钥传输现实无条件安全性的研究进展,重点介绍了针对现实条件安全漏洞的各种类型的量子黑客攻击方案、防御方式,以及最近两年被广泛重视的与测量设备无关的量子密钥分发系统的理论和实验进展。
中图分类号:
王金东,张智明 . 量子密钥分发系统的现实无条件安全性[J]. J4, 2014, 31(4): 449-458.
Wang Jindong,Zhang Zhiming. Unconditional security of quantum key distribution based on practical devices [J]. J4, 2014, 31(4): 449-458.
[1] Douglas R. Stinson. Cryptography: Theory and Practice[M]. Third Edition, CRC Press, CRC Press LLC. 2006. [2] Shannon, C.E. Communication theory of secrecy systems[J]. Bell Tech. J., 1949, 28: 656-715. [3] Wootters, W.K. and W.H. Zurek. A single quantum cannot be cloned[J]. Nature, 1982, 299: 802-803. [4] Wiesner, S. Conjugate coding[J]. ACM SIGACT News, 1983,15: 78-88. [5] Bennett, C.H., F. Bessette, G. Brassard, L. Salvail and J. Smolin. Experimental quantum cryptography[J]. J. Cryptol., 1992, 5: 3-28. [6] Ekert, A.K. Quantum cryptography based on Bell's theorem[J]. Phys. Rev. Lett., 1991, 67: 661-663. [7] Bennett, C.H., G. Brassard, C. Crepeau, R. Jozsa, A. Peres and W. Wootters. Teleporting an unknown quantum state via dual classical and EPR channels[J]. Phys. Rev. Lett., 1993, 70: 1895-1899. [8] Bennett, C.H., G. Brassard and J.M. Robert. Privacy amplification by public discussion[J]. SIAM J. Comput., 1988,17: 210-229. [9] Bennett, C.H., G. Brassard, C. Crkpeau and U.M. Maurer. Generalized privacy amplification[J]. IEEE Trans. Inform. Theory, 1995, 41: 1915-1923. [10] Maurer, U.M. and S. Wolf. Privacy amplification secure against active[J]. Adv. Cryptol. CRYPTO'91, 1996, 1294: 307-321. [11]G. Van Assche, S. lblisdir, and N. J. Cerf. Secure coherent-state quantum key distribution protocols with efficient reconciliation[J]. Physical Review A 2005, 71, 052304. [12] Lo HK, Chau HF. Unconditional security of quantum key distribution over arbitrarily long distances[J]. Science. 1999, 283(5410):2050-6. [13] MAYERS, D. Quantum key distribution and string oblivious transfer in noisy channels[C]. Advances in Cryptology—Proceedings of Crypto ’96 (Aug.). Springer-Verlag, New York, 1996. pp. 343–357. [14] MAYERS, D., AND SALVAIL, L. Quantum oblivious transfer is secure against all individual measurements[C]. Proceedings of the Workshop on Physics and Computation, PhysComp’94, (Dallas, Tex., Nov.). 1994, pp. 69 –77. [15] MAYERS, D. On the security of the quantum oblivious transfer and key distribution protocols[C]. Advances in Cryptology—Proceedings of Crypto ’95 (Aug.). Springer-Verlag, New York, 1995, pp. 124 –135. [16] DEUTSCH, D., EKERT, A. K., JOZSA, R., MACCHIAVELLO, C., POPESCU, S., AND SANPERA, A. Quantum privacy amplification and the security of quantum cryptography over noisy channels[J]. Phys. Rev. Lett. 1996, 77:2818 –2821. [17] BIHAM, E., AND MOR, T. On the security of quantum cryptography against collective attacks[J]. Phys. Rev. Lett. 1996, 78: 2256 –2259. [18] BIHAM, E., BOYER, M., BRASSARD, G., VAN DE GRAAF, J., AND MOR, T. Security of quantum key distribution against all collective attacks[EB/OL]. LANL archives 1998, quant-ph/9801022. [19] MAYERS, D. Unconditional Security in Quantum Cryptography[J]. Journal of the ACM, 2001, 48(3):351-406. [20]Shor, P.W. and J. Preskill. Simple proof of security of the BB84 quantum key distribution protocol[J]. Phys. Rev. Lett., 2000, 2: 441-444. [21]Quan, Z., T. Chao-Jing and Z. Sen-Qiang. Modification of B92 protocol and the proof of its unconditional security[J]. Acta Physica Sinica, 2002, 51: 1447. [22] Tamaki, K., M. Koashi and N. Imoto. Unconditionally secure key distribution based on two nonorthogonal states[J]. Phys. Rev. Lett., 2003, 90: 167904. [23]Masato Koashi and John Preskill. Secure Quantum Key Distribution with an Uncharacterized Source[J]. Phys. Rev. Lett., 2003, 90(5): 057902. [24] Koashi, M. Simple security proof of quantum key distribution based on complementarity[J]. New J. Phys., 2009, 11: 045018-045018. [25] Koashi M. Efficient quantum key distribution with practical sources and detectors[EB/OL]. 2006, arXiv:quantph/0609180. [26] Kai Wen; Kiyoshi Tamaki; Yoshihisa Yamamoto. Unconditional security of single-photon differential phase shift quantum key distribution[J]. Phys. Rev. Lett., 2009, 103: 0401141. [27] Yi-Bo Zhao, Chi-Hang Fred Fung, Zheng-Fu Han, and Guang-Can Guo. Security proof of differential phase shift quantum key distribution in the noiseless case[J]. Phys. Rev. A., 2008,78:042330. [28]D. Gottesman, H.-K. Lo, Norbert Lukenhaus, and John Preskill. Security of Quantum Key Distribution with Imperfect Devices[J]. Quantum Inf. Comput, 2004, 4:325. [29]W.-Y. Hwang. Quantum key distribution with high loss: toward global secure communication[J], Phys. Rev. Lett. 2003, 91:057901. [30] Lo H.K, Ma X, Chen. K. Decoy State Quantum Key Distribution [J]. Phys.Rev.Lett. 2005, 94: 230504. [31] X.-B. Wang. Beating the photon-number-splitting attack in practical quantum cryptography[J]. Phys. Rev. Lett. 2005, 94:230503. [32] Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian. Experimental Quantum Key Distribution with Decoy States[J]. Phys. Rev. Lett. 2006, 96: 070502. [33] D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J.E. Nordholt. Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber[J]. Phys. Rev. Lett. 2007, 98: 010503. [34]H, Inamori, N. Lütkenhaus, and D. Mayers. Unconditional security of pratical quantum key distribution[J]. Eur. Phys. J. D 2007, 41: 599-627. [35] B. Huttner, N.Imoto, N. Gisin and T. Mor. Quantum cryptography with coherent states[J]. Phys. Rev. A, 1995, 51: 1863-1869. [36] W. Y. Hwang, X. B. Wang, K. Matsumoto, J. Kim and H. W. Lee. Shor-Preskill-type security proof for quantum key distribution without public announcement of bases[J]. Phys. Rev. A, 2003, 67: 012302. [37] K. Wen and G. L. Long. Modified Bennett-Brassard 1984 quantum key distribution protocol with two-way classical communications[J]. Phys. Rev. A, 2005, 72: 022336. [38] Wang X.B. Decoy-state protocol for quantum cryptography with four different intensities of coherent light [J]. Phys. Rev.A, 2005, 72:12322. [39] Yi Zhao, Bing Qi, and Hoi-Kwong Lo. Quantum key distribution with an unknown and untrusted source[J]. Phys. Rev. A, 2008, 77:052327. [40] Xiang Peng, Hao Jiang, Bingjie Xu, Xiongfeng Ma,and Hong Guo. Experimental quantum key distribution with an untrusted source [J]. Optics Letters, 2008, 33(18): 2077-2079. [41] A.Vakhitov, V.Makarov and D.Hjelme. Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography [J]. Journal of Modern Optics, 2001, 48(13): 2023-2038. [42] G. Ribordy, J.-D. Gautier, N. Gisin, et al. Fast and user-friendly quantum key distribution [J]. Journal of Modern Optics, 2000, 47:517-531. [43] Chi-Hang, Fred Fung, Bing Qi, Kiyoshi Tamaki and Hoi-Kwong Lo. Phase-remapping attack in practical quantum-key-distribution systems[J]. Phys. Rev. A, 2007, 75:032314. [44] Feihu Xu, Bing Qi and Hoi-Kwong.Lo. Experimental demonstration of phase-remapping attack in a practical quantum key distribution system[J]. New Journal of Physics,2010, 12:113026. [45] V. Makarov and Dag.R.Hjelme. Faked states attack on quantum cryptosystems[J]. Journal of Modern Optics, 2005, 52(5): 691-705. [46] V. Makarov. A. Anisimov and J.Skaar. Effects of detector efficiency mismatch on security of quantum cryptosystems[J]. Phys. Rev. A, 2006, 74: 022313. [47] Bing Qi, Chi-Hang, Fred Fung, Hoi-Kwong Lo, Xiongfeng Ma. Time-shift attack in practical quantum cryptosystems[J]. Quantum Information&Computation2007, 7: 73-82. [48] Nitin Jain, Christoffer Wittmann, Lars Lydersen, et al. Device Calibration Impacts Security of Quantum Key Distribution[J]. Phys.Rev.Lett, 2011, 107: 110501. [49] Lars Lydersen, Carlos Wiechers, Christoffer Wittmann et al. Hacking commercial quantum cryptography systems by tailored bright illumination[J]. Nature Photonics, 2000, 4: 686-689. [50] Vadim Makarov. Controlling passively quenched single photon detectors by bright light[J]. New J. Phys, 2009, 11:065003. [51]H. Kwong Lo, M. Curty, and Bing Q. Measurement device independent quantum key distribution[J]. Phys. Rev. Lett, 2012, 108: 1305031. [52]D. Mayers and A. C. C. Yao. Quantum Cryptography with Imperfect Apparatus[C]. in proceeding of the 39th Annual symposium on Foundations of Computer Science (FOCS98), (IEEE Computer Society, Washington, DC, 1998), 1998, 503. [53]A. Acin et al. Device-Independent Security of Quantum Cryptography Against Collective Attacks[J]. Phys. Rev. Lett. 2007, 98: 230501. [54] K. Tamaki, H.-K. Lo, C.-H. F. Fung, and B. Qi, Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw[J]. Phys. Rev. A, 2012, 85:042307. [55] X. Ma and M. Razavi. Alternative schemes for measurement-device-independent quantum key distribution[J]. Phys. Rev. A, 2012, 86: 062319. [56] X. Ma, Chi-Hang Fred Fung, Mohsen Razavi. Statistical fluctuation analysis for measurement-device-independent quantum key distribution[J]. Phys. Rev. A,2012, 86:052305. [57] Y. Liu, T.-Y. Chen, L.-J.Wang, H. Liang, G.-L. Shentu, J.Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan. Experimental Measurement-Device-Independent Quantum Key Distribution[J]. Phys. Rev. Lett. 2013, 111:130502. [58] Zhiyuan Tang, Zhongfa Liao, Feihu Xu, B. Qi, Li Qian and H.-K. Lo. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution[EB/OL]. 2013, arXiv:1306. 6134. [59] T. Ferreira da Silva, D. Vitoreti, G. B. Xavier, G. C. do Amaral, G. P. Tempor?o, J. P. von der Weid. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits[J]. Phys. Rev. A, 2013, 88: 052303. |
[1] | 摆海龙, 白金海, 胡栋, 王宇. 用于原子干涉重力仪的小型频率合成器设计与实现[J]. 量子电子学报, 2023, 40(4): 510-518. |
[2] | 李嵩松. 玻色-爱因斯坦凝聚体中三体和四体相互作用对自旋压缩和量子纠缠的影响研究[J]. 量子电子学报, 2023, 40(4): 519-527. |
[3] | 王晟, 方晓明, 林昱, 张天兵, 冯宝, 余杨, 王乐 . 四强度诱骗态相位匹配量子密钥分发协议[J]. 量子电子学报, 2023, 40(4): 541-545. |
[4] | 贾 玮 , 张强强 , 卞宇翔 , 李 威 . E91-QKD 中集体攻击上限的研究[J]. 量子电子学报, 2023, 40(3): 407-414. |
[5] | 曹 睿 , 袁晨智 , 沈 思 , 张子昌 , 范云茹 , 李加睿 , 李 浩 , 尤立星 , 周 强 , 王子竹∗. 三维时间片最大纠缠态的最优检测[J]. 量子电子学报, 2023, 40(1): 85-94. |
[6] | 唐世彪∗ , 李 志 , 郑伟军 , 张万生 , 高 松 , 李亚麟 , 程 节 , 蒋连军. 量子密钥分发系统防死时间攻击方案研究[J]. 量子电子学报, 2023, 40(1): 95-103. |
[7] | 阮志强, 张 磊, 赵欣瑜, 江兴方∗. 一种新型圆形掺杂光子晶体光纤负色散特性的分析[J]. 量子电子学报, 2023, 40(1): 133-138. |
[8] | 谈志杰 杨海瑞 喻虹 韩申生. X光强度关联衍射成像技术研究进展[J]. 量子电子学报, 2022, 39(6): 851-862. |
[9] | 林惠祖 刘伟涛 孙帅 杜隆坤 常宸 李月刚. 关联成像算法研究进展[J]. 量子电子学报, 2022, 39(6): 863-879. |
[10] | 王孝艳, 王志远, 陈子阳, 蒲继雄∗. 基于深度学习技术从散斑场中识别 多涡旋结构的轨道角动量[J]. 量子电子学报, 2022, 39(6): 955-961. |
[11] | 李能菲 孙宇松 黄见. 余弦编码复用高空间分辨率关联成像研究[J]. 量子电子学报, 2022, 39(6): 973-982. |
[12] | 戴 攀, 庞志广, 李 剑, 王 琴∗. 基于纠缠源的非线性贝尔不等式研究[J]. 量子电子学报, 2022, 39(5): 761-767. |
[13] | 赵良圆 曹凌云 梁洪源 韦峥 伍千军 钱建林 韩正甫. 基于不同光纤的波分复用型量子密钥分配研究[J]. 量子电子学报, 2022, 39(5): 776-785. |
[14] | 张 瑞, 梅大江, ∗, 石小兔, 马荣国, 张庆礼, ∗, 窦仁勤, 刘文鹏, . YAG 晶体的位错研究进展[J]. 量子电子学报, 2022, 39(5): 687-706. |
[15] | 王晶晶, 刘玉洁, 郑丽∗. 基于超强耦合腔光力系统制备的 宏观量子态特性分析[J]. 量子电子学报, 2022, 39(4): 598-604. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||