[1] Chen Mei, Liu Xiqiang. Symmetries and exact solutions of the breaking soliton equation [J]. Communications in Theoretical Physics,2011,56(11):851-855.[2] Biuman G W, Kumei S. Symmetries and Differential Equations[M]. Berlin: Springer Velag ,1989.[3] Matveev V B, Salle M A. Darboux Transformation and Solitons[M]. Berlin: Springer Velag , 1991.[4] Rogers C, Schief W K. Ba¨cklund and Darboux Transformations, Geometry and Morden Applications in Soliton Theory, Cambridge University Press, Cambridge,2002.[5] Hirota R. The Direct Method in Soliton Theory, Cambridge University Press, Cambridge ,2004. [6] Wang Mingliang, Zhou Yubin, Li Zhibin. Application of a homogeneous banlance method to exact solutions of nonlinear equations in mathematical physics[J].Phys. Lett. A, 1996,216(1):67-75[7] Liu Xiqiang, Jiang Song. The sech-Tanh method and its applications [J].Phys. Lett. A, 2002,8(4):253-258.[8] 陈美,刘希强. Konopelchenko-Dubrovsky 方程组的对称,精确解和守恒律[J]. 纯粹数学与应用数学,2011,27(4):533-539[9] Xin Xiangpeng, Liu Xiqiang, Zhang Linlin. Symmetry Reduction, Exact Solutions and Conservation Laws of the Modified Kadomtzev–Patvishvili-II Equation, Phys.Lett.,2011,28(2): 020201-1---020201-4.[10]张颖元,刘希强,王岗伟.Bogoyavlenskii-Kadontsev-Petviashili方程的新的显式解[J].昆明学院学报,2012,34(3):55-59.[11]Zhang Li hua,Liu Xiqiang. New exact solutions and conservation Laws to (3+1)-Dimensional Potential- YTSF equation[J].Communications in Theoretical Physics,2006,45(3):487-492.[12]Clarkson P A,Kruskal M D.New similarity solutions of the Boussinesq equation[J].Journal of Mathematical Physics,1989,30:2201-2213.[13] Li B Q, Li S, Ma Y L. New eExact novel time solitons for the dissipative Zabolotskaya -Khokhlov equation from nonlinear acoustics[J]. Zeit- schrift für Naturforschung A, 2012, 67: 601-607.[14] Liu Xiajie, Mei Chunliang, Ma Songhua. Traveling wave solutions and kind wave excitations for the (2 + 1)-dimensional dissipative Zabolotskaya-Khokhlov equation[J]. Applied Mathematics, 2013, 4: 1595-1598.[15] Masayoshi T, Similarity reductions of the Zabolotskaya-Khokhlov equation with a dissipative term[J]. Nonlinear Mathematical Physics 1995, 2: 392–397.[16] Lu D C, Hong B J.New exact solutions for the (2+1)-dimensional Generalized Broer-Kaup system. Applied Mathematics and Computation 2008; 199:572-580.[17] Ibragimov N H. A new conservation theorem[J]. Journal of Mathematical Analysis Application, 2007, 333: 311–328. |