[1]Bluman G W, Kumei S. Symmetries and Differential Equations[M]. Spring-Verlag: New York Berlin, 1989.[2]Sophocleous C, Wiltshire R.J. Linearisation and potential symmetries of certain systems of diffusion equations[J]. Phys A, 2006,370: 329-345.[3]Qu C Z. Potential symmetries to system of nonlinear diffusion equation[J]. J. Phys A, 2007, 40: 1757-1773.[4]Bluman G W, Temuer Chaolu. Local and nonlocal Symmetries for nonlinear telegraph equation[J]. J. Math. phys}. 2005, 46: 023505.[5]特木尔朝鲁, 张志勇. 一类非线性波动方程的势对称分类[J]. 系统科学与数学, 2009, 29(3): 389–411.[6]苏道毕力格, 朝鲁. 用吴方法计算BBM-Burgers方程的势对称及其不变解[J].内蒙古大学学报自然科学版, 2006, 37(4): 366-373.[7]特木尔朝鲁, 白玉山. 基于吴方法的确定和分类(偏)微分方程古典和非古典对称新算法理论[J]. 中国科学A. 2010, 40(4): 1-18.[8]特木尔朝鲁, 额尔敦布和, 郑丽霞. 扩充偏微分方程(组)守恒律和对称的辅助方程方法及微分形式吴方法的应用[J]. 应用数学学报, 2007, 30(5): 910-927.[9]Temuer Chaolu, Bai Y S. Differential characteristic set algorithm for the complete symmetry classification of partial differential equations[J]. Appl. Math. Mech. Engl. Ed. 2009, 30(5): 595-606.[10]苏道毕力格, 王晓民, 乌云莫日根. 对称分类在非线性偏微分方程组边值问题中的应用[J]. 物理学报, 2014, 63(4): 040201.[11]苏道毕力格,王晓民,鲍春玲. 利用对称方法求解非线性偏微分方程组边值问题的数值解[J]. 应用数学, 2014, 27(4): 708-713.[12]朱永平, 吉飞宇, 陈晓艳. 广义KdV-Burgers方程的势对称和不变解[J]. 纯粹数学与应用数学, 2013, 29(2): 164-171.[13]张红霞, 郑丽霞, 杜永胜. Benney方程的势对称和不变解[J]. 动力学与控制学报, 2008, 6(3): 219-222.[14]Sudao Bilige, Temuer Chaolu. An extended simplest equation method and its application to several forms of the fifth-order KdV equation[J]. Appl. Math. Comput. 2010, 216: 3146-3153.[15]Sudao Bilige, Temuer Chaolu, Wang X.M. Application of the extended simplest equation method to the coupled Schrodinger-Boussinesq equation[J]. Appl. Math. Comput. 2013, 224: 517-523.[16]He Y H, Zhao Y M, Long Y. Exact Solutions for a New Nonlinear KdV-Like Wave Equation Using Simplest Equation Method and Its Variants[J]. J. Appl. Math. 2014, 578362.[17]Zhao Y M. New Exact Solutions for a Higher-Order Wave Equation of KdV Type Using the Multiple Simplest Equation Method[J]. J. Appl. Math. 2014, 848069.[18]Sudao Bilige, Wang X M. Application of the extended simplest equation method to the Whitham-Broer-Kaup-Like equations[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2014, 31: 141-148. |