[1]吴健辉,张国云,杨坤涛,基于置信度的多分类器互补集成手写数字识别[J]. 计算机工程与应用,2007,43(30):228-230.[3]廖斌,刘鸳鸳.基于多尺度灰度变换的图像増强研究[J].量子电子学报,2015,32(5):550-554.[3]K. Leung, C. Leung, “Recognition of handwritten Chinese characters by critical region analysis” [J]. Pattern Recognition, 2010,43(3): 949-961. [4]GAO T F, LIU C L. High accuracy handwritten Chinese character recognition using LDA-based compound distances[J]. Pattern Recognition, 2008, 41(11): 3442-3451. [5]D. Tao, L. Liang, L. Jin, et al, “Similar handwritten Chinese character recognition by kernel discriminative locality alignment”[J], Pattern Recognition Letters, 35(1): 186-194, 2014. [6]LECUN Y, BOSERB, DENKER J S, et al. Handwritten digit recognition with a back-propagation network[A]. Advances in neural information processing systems[C]. Denver, United States, 1990. 396-404. [7] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [8] DENG H, STATHOPOULOS G, SUEN C Y. Error-correcting output coding for the convolutional neural network for optical character recognition[A]. Proceedings of IEEE International Conference on Document Analysis and Recognition[C].Barcelona, Spain, 2009: 581-585. [9] YUAN A, BAI G, JIAO L, et al. Offline handwritten English character recognition based on convolutional neural network[A]. Proceedings of IAPR International Workshop on Document Analysis Systems[C]. Gold Cost, QLD, 2012. 125-129. [10]NETZER Y, WANG T, COATES A, et al. Reading digits in natural images with unsupervised feature learning[A]. NIPS Workshop on Deep Learning and Unsupervised Feature Learning[C]. Granada, Spain, 2011. [11] SERMANET P, CHINTALA S, LECUN Y. Convolutional neural networks applied to house numbers digit classification[A].Proceedings of IEEE International Conference on Pattern Recognition[C].Tsukuba, Japan, 2012. 3288-3291. [12]COATES A, CARPENTER B, CASE C, et al. Text detection and character recognition in scene images with unsupervised feature learning[A]. Proceedings of IEEE International Conference on Document Analysis and Recognition[C]. Beijing, China, 2011. 440-445. [13]WANG T, WU D J, COATES A, et al. End-to-end text recognition with convolutional neural networks[A]. Proceedings of IEEE International Conference on Pattern Recognition[C].Tsukuba, Japan, 2012. 3304-3308. [14]SIMARD P, STEINKRAUS D, PLATT J C. Best practices for convolutional neural networks applied to visual document analysis[A]. Proceedings of IEEE International Conference on Document Analysis and Recognition[C]. Edinburgh, UK, 2003.958-963. [15]CIRESAN D C, MEIER U, GAMBARDELLA L M, et al. Convolutional neural network committees for handwritten character classification[A]. Proceedings of IEEE International Conference on Document Analysis and Recognition[C]. Beijing, China, 2011. 1135-1139. [16]VAQUERO L M, CACERES J, MORAN D. The challenge of service level scalability for the cloud[J]. International Journal of Cloud Applications and Computing (IJCAC), 2011, 1(1):34-44. [17]GAO Y, JIN L W, HE C, et al. Handwriting character recognition as a service: a new handwriting recognition system based on cloud computing[A]. Proceedings of IEEE International Conference on Document Analysis and Recognition[C]. Beijing, China, 2011. 885-889. [18]LIU Z B, JIN L W. A static candidates generation technique and its application in two-stage LDA Chinese character recognition[A]. Proceedings of Chinese Control Conference[C]. Hunan, China, 2007. 571-575. |