J4 ›› 2016, Vol. 33 ›› Issue (5): 530-536.

• 图像与信息处理 • 上一篇    下一篇

一种云平台下高识别率的手写汉字光学图像识别系统

胡晓芳1,赵元黎2   

  1. 1长治学院电子信息与物理系,山西 长治 046000;2郑州大学物理工程学院,河南 郑州 450001
  • 收稿日期:2015-12-16 修回日期:2016-07-22 出版日期:2016-09-28 发布日期:2016-09-28
  • 通讯作者: 赵元黎(1957-) ,女,博士,教授,研究方向:测控计量技术。
  • 作者简介:胡晓芳(1974-),女(汉族),山西省晋中市,硕士,讲师,主要研究领域为光学图像处理、数字信号处理、数字电路.
  • 基金资助:
    国家自然科学基金资助项目(10974183)

An optical image recognition system for handwritten Chinese character recognition rate in cloud platform

Hu Xiaofang, Zhao Yuanli   

  1. 1Department of Electronic Information and Physics,Changzhi University,Changzhi Shanxi 046011,China;2 School of Physics and Engineering,Zhengzhou University,Zhengzhou 450001,China
  • Received:2015-12-16 Revised:2016-07-22 Published:2016-09-28 Online:2016-09-28

摘要: 针对原有手写汉字识别系统中文字特征提取的相关问题,笔者在本篇文章中设计了一类全新的方法,本方法结合卷积神经网对字形相似的字智能化学习有效特征,并且采用了光学图像识别技术,另外,这类方法通过手写云平台中丰富的数据资源对模型进行高效的训练,同时根据频度统计形成特定的相似子集,以此有效的优化识别率。实验结果显示,和原有的支持向量机(SVM)以及最近邻分类器方法进行系统性的对比,本文所论述的方法能够显著提升识别率。

关键词: 手写汉字;自动学习;卷积神经网;云平台;识别率

Abstract: For the feature extraction methods’ restrictions problem of handwritten chinese character recognition in traditional two handwritten cinese character recognition system, the paper proposes a identification system method which uses convolution neural network to automatically learn chinese characters similar characteristics. The method uses data from large handwritten cloud platform to train the model, generating similar frequency statistics based on a subset of, and further improve the recognition rate. Experimental results show that the recognition rate with respect to the traditional gradient-based feature support vector machine (SV and nearest neighbor classifier method, this method has improved to some extent.

Key words: Handwritten cinese character; Automatic learning; Convolution neural network; Cloud platform; Recognition rate