J4 ›› 2016, Vol. 33 ›› Issue (6): 653-661.

• 图像与信息处理 • 上一篇    下一篇

基于属性关系矩阵的AP子空间聚类算法

朱红 丁世飞   

  1. 1.徐州医科大学医学信息学院,江苏 徐州 221005; 2.中国矿业大学计算机科学与技术学院,江苏 徐州 221116
  • 收稿日期:2016-05-31 修回日期:2016-07-17 出版日期:2016-11-28 发布日期:2016-11-28
  • 通讯作者: 朱红(1970-),女,江苏徐州人,副教授,博士,主要研究方向为数据挖掘、粒度计算。 E-mail:zhuhongwin@126.com

AP Subspace Clustering Algorithm Based on Attributes Relation Matrix

Zhu Hong, Ding Shifei   

  1. 1.School of Medical Information, Xuzhou Medical University, Xuzhou 221005, China; 2.School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116,China
  • Received:2016-05-31 Revised:2016-07-17 Published:2016-11-28 Online:2016-11-28

摘要: Affinity Propagation(AP)聚类算法将所有数据点作为潜在的聚类中心,在相似度矩阵的基础上通过消息传递进行聚类, 但却不适用于子空间聚类。基于属性关系矩阵的AP子空间聚类算法(AP clustering algorithm based on attributes relation matrix, ARMAP)是一种异步软子空间聚类算法,首先通过计算属性a的 邻域得到属性的关系矩阵,然后通过查找极大全1子矩阵得到数据集的兴趣度子空间,最后在各兴趣度子空间使用AP算法聚类,完成子空间聚类的任务。ARMAP算法将子空间的查找转换成查找矩阵的极大全1子矩阵,在正确查找子空间的同时,降低了时间复杂度。算法既保留了AP聚类算法的优点,又克服了AP算法不能进行子空间聚类的不足。

关键词: 聚类分析;子空间聚类;AP聚类;关系矩阵

Abstract: AP algorithm takes all data as potential clustering centers. But it is not appropriate for subspace clustering. AP subspace clustering algorithm based on attributes relation matrix(ARMAP) is asynchronous soft subspace clustering algorithm. This algorithm first calculates attribute relation matrix through neighborhood of attribute a. The candidate of all interesting subspaces is achieved by looking for the maximum sub-matrixes of attribute relation matrix which contain only 1. Finally, all subspace clusters can be gotten through AP clustering on interesting subspaces. The method obtains interesting subspaces correctly and reduces time and space complexity at the same time. It keeps the advantages of AP clustering and overcome the shortage of it.

Key words: clustering analysis; subspace clustering; AP clustering; relation matrix

中图分类号: