J4 ›› 2016, Vol. 33 ›› Issue (6): 662-670.

• 图像与信息处理 • 上一篇    下一篇

基于提升小波的矩不变量车牌字符识别方法

高强1,刘斌2   

  1. 湖北大学计算机与信息工程学院 湖北 武汉 430062
  • 收稿日期:2015-09-28 修回日期:2015-12-14 出版日期:2016-11-28 发布日期:2016-11-28
  • 通讯作者: 刘斌(1963-),湖北人,博士,教授,博士生导师,从事模式识别、图像处理及小波理论的研究。 E-mail:liubin3318@163.com
  • 作者简介:高强(1988-)湖北人,硕士研究生,从事模式识别与图像处理的研究.E-mail:shengqiang8814@qq.com
  • 基金资助:
    国家自然科学基金面上项目(No.61471160),湖北省自然科学基金重点项目(No.2012FFA053) The research foundation: The National Natural Science Foundation of China(No.61471160), The Key Project of the National Natural Science of Hubei Province(No.2012FFA053)

Vehicle license plate character recognition based on lifting wavelet transform and invariant moment

GAO Qiang, LIU Bin   

  1. School of Computer and Information Engineering,Hubei University,Wuhan 430062,China
  • Received:2015-09-28 Revised:2015-12-14 Published:2016-11-28 Online:2016-11-28

摘要: 车牌识别系统的关键在于字符的识别,而字符识别的核心是字符特征的提取。小波变换可以获取字符的细节结构特征,而不变矩能很好地对其进行描述,故将两者结合起来提取字符的特征;同时利用张量积小波分解的高频子图具有方向性的特点,提取字符的笔画特征,最终得到反映字符结构和统计特征的联和特征向量,并且字符图像的分解采用第二代提升小波算法进一步降低了计算复杂性。实验结果表明,此方法提取得到的联合特征向量能够取得98%的字符综合识别率,可以满足实际应用的要求。

关键词: 模式识别;提升小波变换;不变矩;统计特征;结构特征;笔画特征

Abstract: The key of the license plate recognition system is the character recognition and the core of the character recognition is to extract character features. The wavelet transformation can obtain the details and the structural features for characters and the invariant moment can describe it well. So we combine the two to extract the features of the characters. Meanwhile the directional high frequency sub-images which are decomposed by the tensor product wavelet can be extracted the character strokes feature. Finally we get the alliance feature vector that reflect the structural and statistical features of characters using the second generation lifting wavelet algorithm to further reduce the computational complexity. The experiments results show that the proposed method can achieve 98% recognition rate and can meet the requirements of practical application.

Key words: pattern recognition; lifting wavelet transform; invariant moment; statistical features; structural features; character strokes