J4 ›› 2017, Vol. 34 ›› Issue (3): 349-356.
陈华俊,方贤文
收稿日期:
2016-01-19
修回日期:
2016-05-11
出版日期:
2017-05-28
发布日期:
2017-05-22
通讯作者:
陈华俊(1985-),博士,讲师,主要研究方向为腔光力学系统。Email: chenphysics@126.com
基金资助:
Received:
2016-01-19
Revised:
2016-05-11
Published:
2017-05-28
Online:
2017-05-22
摘要: 研究了Bose-Einstein凝聚(BEC)腔光力学系统中的相干完美吸收现象,阐述了诱导相干完美吸收产生的条件,分析了强耦合BEC光力学腔发生相干完美吸收时的能量转换。通过控制泵浦场功率可以有效调制相干完美吸收。当相干完美吸收产生时,输入探测场能量完全转化为机械振子和腔场能量而不产生任何透射和反射,并且通过改变腔的品质因子Q可实现能量萃取。强耦合BEC腔光力学系统为基于相干完美吸收的换能器、调制器及光开关等潜在应用提供了理论基础。
中图分类号:
陈华俊 方贤文. 基于Bose-Einstein凝聚腔光力学系统的可调控相干完美吸收[J]. J4, 2017, 34(3): 349-356.
[1] Longhi S. Backward lasing yields a perfect absorber [J]. Physics, 2010, 3:61.[2] Stone A D. Gobbling up light with an antilaser [J]. Phys. Today, 2011, 64(11): 68[3] Chong Y D, Ge L, Cao H, et al. Coherent perfect absorbers: time-reversed lasers [J]. Phys. Rev. Lett. 2010, 105(5):1-2.[4] Wan W, Chong Y, Ge L, et al. Time-reversed lasing and interferometric control of absorption [J]. Science, 2011, 331(6019): 889-892.[5] Gmachl C F. Laser science: Suckers for light [J]. Nature, 2010, 467(7311): 37-39.[6] Noh H, Chong Y, Stone A D, et al. Perfect coupling of light to surface plasmons by coherent absorption [J]. Phys. Rev. Lett. 2012, 108(18): 1222-1228[7] Yoon J W, Park W J, Lee K J, et al. Surface-plasmon mediated total absorption of light into silicon [J]. Opt. Express, 2011, 19(21): 20673-20680.[8] Ghenuche P, Vincent G, Laroche M, et al. Optical extinction in a single layer of nanorods [J]. Phys. Rev. Lett. 2012, 109(14): 2920-2921.[9] Shourya D G, Martin O J F, Dutta G S, et al. Controllable coherent perfect absorption in a composite film [J]. Opt. Express, 2012, 20(2): 1330-1336.[10] Yoon J W, Koh G M, Song S H, et al. Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thinfilm grating [J]. Phys. Rev. Lett. 2012, 109(25): 4657-4675.[11] Klimov V, Sun S, Guo G. Coherent perfect nanoabsorbers based on negative refraction [J]. Opt. Express, 2012, 20(12): 13071.[12] Pu M, Feng Q, Hu C, et al. Perfect Absorption of Light by Coherently Induced Plasmon Hybridization in Ultrathin Metamaterial Film [J]. Plasmonics, 2012, 7(4): 733-738.[13] Longhi S. Time-reversed optical parametric oscillation [J]. Phys. Rev. Lett. 2011, 107(3): 373-377[14] Chong Y D, Ge L, Stone A D. PT-symmetry breaking and laser-absorber modes in optical scattering systems [J]. Phys. Rev. Lett. 2010, 106(9): 503-508.[15] Aspelmeyer T J, Kippenberg M, Marquardt F. Cavity Optomechanics [J]. Rev. Mod. Phys. 2013, 86(4): 1391-1452.[16] Chen H J, Mi X W. Normal mode splitting and cooling induced by radiation pressure in strong coupling optomechanical cavity [J]. Chinese Journal of Quantum Electronics, 2012, 29(2):153-164.[17] Sankey J C, Yang C, Zwickl B M, et al. Strong and Tunable Nonlinear Optomechanical Coupling in a Low-Loss System [J]. Nat. Phys. 2010, 6(9): 707-712.[18] Agarwal G S, Huang S. Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes [J]. New Journal of Physics, 2014, 16(3): 1040-1047.[19] Weis S, Rivi`ere R, Del′eglise S, et al. Optomechanically Induced Transparency [J]. Science, 2010, 330(6010): 1520-1523.[20] Safavi-Naeini A H, Alegre T P M, Chan J, et al. Electromagnetically induced transparency and slow light with optomechanics [J]. Nature, 2011, 472(7341): 69-73.[21] Chen B, Jiang C, K. D. Zhu K D. Slow light in a cavity optomechanical system with a Bose-Einstein condensate [J]. Phys Rev. A, 2011, 83(5): 2316-2321.[22] Hocke F, Zhou X Q, Schliesser A, et al. Electromechanically induced absorption in a circuit nano-electromechanical system [J]. New J. Phys.2012, 14(24): 123037-123051.[23] Qu K, Agarwal G S. Fano resonances and their control in optomechanics [J]. Phys. Rev. A, 2013, 87(6): 4996-4996.[24] Brennecke F, Ritter S, Donner T, et al. Cavity optomechanics with a Bose-Einstein condensate [J]. Science, 2008, 322(5899): 235-238.[25] Colombe Y, Steinmetz T, Dubois G, et al. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip [J]. Nature, 2007, 450(7167): 272-276.[26] Nagy D, K′onya G, Szirmai G, et al. The Dicke model phase transition in the quantum motion of a Bose-Einstein condensate in an optical cavity [J]. Phys. Rev. Lett. 2009, 104(13): 1041-1093.[27] Paternostro M, Chiara G D, Palma G M. Cold-Atom-Induced Control of an Optomechanical Device [J]. Phys. Rev. Lett. 2010, 104(24): 2583-2587.[28] Murch K W, Moore K L, Gupta S, et al. Observation of quantum-measurement backaction with an ultracold atomic gas [J]. Nat. Phys. 2008, 4(7): 561-564.[29] Boyd R W. Nonlinear Optics [M]. Academic, San Diego, CA, 1992, p.225.[30] Walls D F, Milburn G J. Quantum Optics [M]. Springer-Verlag, Berlin, 1994, Chap.7.[31] Ritter S, Brennecke F, Baumann K, et al. Dynamical coupling between a Bose–Einstein con-densate and a cavity optical lattice [J]. Appl. Phys. B, 2009, 95(2): 213-218.[32] Dobrindt J M, Wilson-Rae I, Kippenberg T J, Parametric Normal-Mode Splitting in Cavity Optomechanics [J]. Phys. Rev. Lett. 2008, 101(26): 973-980 |
[1] | 摆海龙, 白金海, 胡栋, 王宇. 用于原子干涉重力仪的小型频率合成器设计与实现[J]. 量子电子学报, 2023, 40(4): 510-518. |
[2] | 李嵩松. 玻色-爱因斯坦凝聚体中三体和四体相互作用对自旋压缩和量子纠缠的影响研究[J]. 量子电子学报, 2023, 40(4): 519-527. |
[3] | 王晟, 方晓明, 林昱, 张天兵, 冯宝, 余杨, 王乐 . 四强度诱骗态相位匹配量子密钥分发协议[J]. 量子电子学报, 2023, 40(4): 541-545. |
[4] | 贾 玮 , 张强强 , 卞宇翔 , 李 威 . E91-QKD 中集体攻击上限的研究[J]. 量子电子学报, 2023, 40(3): 407-414. |
[5] | 曹 睿 , 袁晨智 , 沈 思 , 张子昌 , 范云茹 , 李加睿 , 李 浩 , 尤立星 , 周 强 , 王子竹∗. 三维时间片最大纠缠态的最优检测[J]. 量子电子学报, 2023, 40(1): 85-94. |
[6] | 唐世彪∗ , 李 志 , 郑伟军 , 张万生 , 高 松 , 李亚麟 , 程 节 , 蒋连军. 量子密钥分发系统防死时间攻击方案研究[J]. 量子电子学报, 2023, 40(1): 95-103. |
[7] | 阮志强, 张 磊, 赵欣瑜, 江兴方∗. 一种新型圆形掺杂光子晶体光纤负色散特性的分析[J]. 量子电子学报, 2023, 40(1): 133-138. |
[8] | 谈志杰 杨海瑞 喻虹 韩申生. X光强度关联衍射成像技术研究进展[J]. 量子电子学报, 2022, 39(6): 851-862. |
[9] | 林惠祖 刘伟涛 孙帅 杜隆坤 常宸 李月刚. 关联成像算法研究进展[J]. 量子电子学报, 2022, 39(6): 863-879. |
[10] | 王孝艳, 王志远, 陈子阳, 蒲继雄∗. 基于深度学习技术从散斑场中识别 多涡旋结构的轨道角动量[J]. 量子电子学报, 2022, 39(6): 955-961. |
[11] | 李能菲 孙宇松 黄见. 余弦编码复用高空间分辨率关联成像研究[J]. 量子电子学报, 2022, 39(6): 973-982. |
[12] | 戴 攀, 庞志广, 李 剑, 王 琴∗. 基于纠缠源的非线性贝尔不等式研究[J]. 量子电子学报, 2022, 39(5): 761-767. |
[13] | 赵良圆 曹凌云 梁洪源 韦峥 伍千军 钱建林 韩正甫. 基于不同光纤的波分复用型量子密钥分配研究[J]. 量子电子学报, 2022, 39(5): 776-785. |
[14] | 张 瑞, 梅大江, ∗, 石小兔, 马荣国, 张庆礼, ∗, 窦仁勤, 刘文鹏, . YAG 晶体的位错研究进展[J]. 量子电子学报, 2022, 39(5): 687-706. |
[15] | 王晶晶, 刘玉洁, 郑丽∗. 基于超强耦合腔光力系统制备的 宏观量子态特性分析[J]. 量子电子学报, 2022, 39(4): 598-604. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||