J4 ›› 2017, Vol. 34 ›› Issue (6): 682-690.

• 量子物理 • 上一篇    下一篇

变系数薛定谔方程的Painlevé分析及解析解

李英杰,智红燕   

  1. 中国石油大学(华东)理学院
  • 收稿日期:2016-07-05 修回日期:2016-08-23 出版日期:2017-11-28 发布日期:2017-12-11
  • 通讯作者: 智红燕

Painlevé analysis and solutions of the variable coefficient Schr?dinger equation

  • Received:2016-07-05 Revised:2016-08-23 Published:2017-11-28 Online:2017-12-11

摘要: 基于WTC算法和符号计算,考察了含时空的变系数非线性薛定谔方程的Painlevé性质及解析解。方程的四个变系数中,前两个是纵向距离的二阶色散和非线性系数,后两个为光纤损耗因子的实部和虚部。首先利用WTC方法推导出了方程具有Painlevé可积性时四个变系数之间的关系.并利用Painlevé截断法求出了其具有三种特殊形式的有理函数解,同时利用变量分离法求得了该方程的部分解,是其常系数情况下现有结论的推广。

关键词: WTC算法

Abstract: Based on the WTC method and the symbolic computation, the Painlevé analysis and exact solutions of the variable coefficient nonlinear Schr?dinger (NLS) equation which involves four arbitrary functions of space-time. Among the four variable coefficients of the equation, the first two are two order dispersion of longitudinal distance and nonlinear coefficient respectively, and the last two are the real and imaginary parts of the optical fiber loss factor. At first, some parametric restriction of four variable coefficients are derived to pass Painlevé test with the WTC method. Then, three special forms of rational function solutions are derived with the Painlevé truncation method. At the same time, some other type solutions are obtained by the variable separation method. The obtained results is the extension of the existing conclusions.

Key words: WTC method

中图分类号: