J4 ›› 2017, Vol. 34 ›› Issue (6): 672-681.

• 图像与信息处理 • 上一篇    下一篇

可控金字塔分解的立体图像质量评价方法

刘新会,桑庆兵   

  1. 江南大学
  • 收稿日期:2016-12-07 修回日期:2017-02-17 出版日期:2017-11-28 发布日期:2017-12-11
  • 通讯作者: 刘新会

Stereo image quality evaluation method based on Steerable Pyramid decomposition

  • Received:2016-12-07 Revised:2017-02-17 Published:2017-11-28 Online:2017-12-11

摘要: 近年来,随着3D电影、3D电视和3D游戏等技术的普及,立体图像处理已经成为研究热点,而对立体图像的质量评价就是此领域中的一项重要技术。本文首先使用最小能量差的方法得到左右视图的视差图,再对左视图、右视图和视差图分别进行4尺度12个方向的可控金字塔(Steerable Pyramid)分解得到3条高频子带114条方向子带,对左右视图分解后相对应的48条方向子带进行二元广义高斯分布拟合,提取其形状参数和尺度参数,并对所有方向子带提取跨尺度相关性、空间相关性等特征信息,最后将这些特征输入支持向量回归(SVR)训练预测得到立体图像质量评分。实验结果表明,该质量评价模型在LIVE 3D数据库上的性能指标SROCC和CC均在0.93以上,与人类的主观评价具有较好的一致性。

关键词: 支持向量回归(SVR)

Abstract: In recent years, with 3D movies, 3D TV and 3D games development, stereo image has become a hot research topic. The quality assessment of stereo image is an important technology in this field. Against this problem, we utilize the steerable pyramid decomposition which has 4 scales and 12 orientations on the left image, right image and the disparity map that gain from the minimum error energy in the left and right image to get 3 high frequency sub-bands and 114 orientation sub-bands. We extract bivariate generalized Gaussian distribution of scale and shape parameters from 48 sub-bands which are got from the left image and the right image. Then we extract correlations across scales, spatial correlation statistical features from all orientation sub-bands. These features put into the support vector regression (SVR) trained to predict the stereo image quality score. The experimental results shows that the objective evaluation model used in this paper, SROCC and CC are more than 0.93 in the 3D LIVE database, and it has good consistency with the subjective evaluation of human.

Key words: Support vector regression (SVR)

中图分类号: