量子电子学报 ›› 2022, Vol. 39 ›› Issue (3): 364-372.doi: 10.3969/j.issn.1007-5461.2022.03.008

• 图像与信息处理 • 上一篇    下一篇

基于3D-MobileNetv2 的多目标实时跟踪框架

毛仁祥1, 常建华1;2*, 张树益1 李红旭1, 张露瑶1   

  1. ( 1 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 江苏南京210044; 2 南京信息工程大学江苏省气象探测与信息处理重点实验室, 江苏南京210044 )
  • 收稿日期:2020-11-30 修回日期:2021-01-13 出版日期:2022-05-28 发布日期:2022-05-28
  • 通讯作者: E-mail: jianhuachang@nuist.edu.cn E-mail: jianhuachang@nuist.edu.cn
  • 作者简介:毛仁祥( 1996 - ), 江苏泰州人, 研究生, 主要从事点云处理, 目标检测与追踪等方面的研究。E-mail: 1203161293@qq.com
  • 基金资助:
    Supported by National Natural Science Foundation of China (国家自然科学基金, 61875089), Research and Practice Innovation Plan for Postgraduates in Jiangsu Province (江苏省研究生科研与实践创新计划, SJCX19-0308)

Multi-target real-time tracking system based on 3D-MobileNetv2

MAO Renxiang1, CHANG Jianhua1;2*, ZHANG Shuyi1, LI Hongxu1, ZHANG Luyao1   

  1. ( 1 Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2 Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science & Technology, Nanjing 210044, China )
  • Received:2020-11-30 Revised:2021-01-13 Published:2022-05-28 Online:2022-05-28

摘要: 为了克服卡尔曼滤波在远距离以及遮挡情形下跟踪不准确的问题, 设计了一个多目标实时跟踪框架, 利 用神经网络预测目标物体在三维空间里的状态, 使用匈牙利算法逐帧进行数据关联, 设计轨迹管理模块管理相 应的轨迹, 实现多目标跟踪。相较于传统的框架, 该框架不需要在图像空间执行卡尔曼滤波, 不仅能在高帧速率 准确跟踪遮挡目标, 而且对远距离目标也有优异的表现。以KITTI 数据集进行测试, 性能指标如下: 多目标跟踪准确度为79.22,多目标跟踪精确度为78.33, 多数丢失数为54.19, 多数跟踪数为13.21, ID 转变数为16, 运行速 度为39 帧/秒。相较于传统的卡尔曼框架, 准确率提升了11%,并且抗遮挡性也有大幅度提升。

关键词: 图像处理, 多目标跟踪, 深度学习, 激光点云

Abstract: In order to overcome the inaccurate tracking problem of Kalman filter in the case of long distance and occlusion, a multi-target real-time tracking framework is designed. In the framework, neural network is used to predict the state of the target object in three-dimensional space, Hungarian algorithm is used for data association frame by frame, and the trajectory management module is designed to manage the corresponding trajectory to realize multi-target tracking. Compared with the traditional framework, this framework does not need to perform Kalman filtering in the image space. It can not only track occluded targets accurately at high frame rate, but also has excellent performance for long-distance targets. The performance of the framework on Kitti dataset is as follows: multi-target tracking accuracy is 79.22, multi-target tracking accuracy is 78.33, most of the lost number is 54.19, most of the tracking number is 13.21, ID transition number is 16, the running speed is 39 frames per second. Compared with the traditional Kalman framework, the accuracy of the designed framework is improved by 11%, and the anti occlusion performance is also greatly improved.

Key words: image processing, multi-target tracking, deep learning, laser point cloud

中图分类号: