量子电子学报 ›› 2022, Vol. 39 ›› Issue (6): 880-898.doi: 10.3969/j.issn.1007-5461.2022.06.005

• "光电探测与成像新技术及应用"专辑 • 上一篇    下一篇

基于深度学习的散射光场成像研究进展

林 冰1 , 樊学强1 , 李德奎1 , 彭志勇2 , 郭忠义1∗   

  1. ( 1 合肥工业大学计算机与信息学院, 安徽 合肥 230601; 2 天津津航技术物理研究所, 天津 300192 )
  • 收稿日期:2022-06-06 修回日期:2022-07-14 出版日期:2022-11-28 发布日期:2022-12-14
  • 通讯作者: E-mail: guozhongyi@hfut.edu.cn E-mail: E-mail: guozhongyi@hfut.edu.cn
  • 作者简介:林 冰 ( 1999 - ), 女, 内蒙赤峰人, 研究生, 主要从事散射光场成像方面的研究。 E-mail: linbing2021s@163.com
  • 基金资助:
    Supported by National Natural Science Foundation of China (国家自然科学基金, 61775050)

Research Progress of imaging through scattering media based on the deep learning

LIN Bing 1 , FAN Xueqiang 1 , LI Dekui 1 , PENG Zhiyong 2 , GUO Zhongyi 1∗   

  1. ( 1 School of Computer and Information, Hefei University of Technology, Hefei 230601, China; 2 Tianjin Jinhang Institute of Technical Physics, Tianjin 300192, China )
  • Received:2022-06-06 Revised:2022-07-14 Published:2022-11-28 Online:2022-12-14

摘要: 散射介质会改变光子的传播方向和传输路径,导致成像质量下降甚至形成散斑。理论上,可以利用散射介质的传输矩阵对目标信息进行恢复,但是求解传输矩阵的过程十分复杂。近年来,深度学习的快速发展为解决散射光场成像问题提供了新思路,其作为一种求解逆问题的常用方法可以准确恢复目标信息、提高成像质量,在散射光场成像领域发挥着重大作用并取得了一系列杰出的科研成果。在这里,基于深度学习中的监督学习和无监督学习,总结了现阶段基于深度学习的散射光场成像技术的研究进展,分析了该技术的优势及所面临的挑战。同时,本文从深度学习的网络结构、成像质量、泛化性等方面分析比较了各类成像技术性能,并展望了该领域未来可能的发展趋势。

关键词: 信息光学, 散射光场成像, 目标重建, 深度学习, 散射介质

Abstract: Scattering media will change the transmission direction and transmission path of photons, resulting in a decrease in image quality and even forming speckle. Theoretically, information of targets can be recovered by the transmission matrix of the scattering medium, but the process to solve the transmission matrix is too complicated. Then, the rapid development of deep learning provides a new method to solve the problem of imaging through scattering media. As a typical method for solving inverse problems, it can recover the target information accurately, improve the imaging quality, solve many difficult problems, and achieve important research results through scattering imaging. Existing learning methods could be divided into two categories: supervised learning and unsupervised learning. Herein, we summarize the progress of imaging through scattering media based on the two methods, and analyze the advantages and challenges of this technology. Besides, based on the aspects of network structure, imaging quality, generalization and so on, a various of scattering imaging technologies are analyzed and compared. Finally, the development trends are prospected.

Key words: information optics, scattering imaging, target reconstruction, deep learning, scattering media

中图分类号: