量子电子学报 ›› 2022, Vol. 39 ›› Issue (6): 899-926.doi: 10.3969/j.issn.1007-5461.2022.06.006
陈建明1,2 , 曾祥津1,2 , 钟丽云1,2 , 邸江磊1,2∗ , 秦玉文1,2∗
收稿日期:
2022-07-18
修回日期:
2022-08-16
出版日期:
2022-11-28
发布日期:
2022-12-14
通讯作者:
E-mail: jiangleidi@gdut.edu.cn
E-mail: E-mail: jiangleidi@gdut.edu.cn
作者简介:
陈建明 ( 1999 - ), 湖南衡阳人, 研究生, 主要研究方向为基于深度学习的图像分析与处理。 E-mail: 2112103003@mail2.gdut.edu.cn
基金资助:
CHEN Jianming 1,2 , ZENG Xiangjin 1,2 , ZHONG Liyun 1,2 , DI Jianglei 1,2∗ , QIN Yuwen 1,2∗
Received:
2022-07-18
Revised:
2022-08-16
Published:
2022-11-28
Online:
2022-12-14
摘要: 近年来,图像采集设备的高速发展极大地丰富了图像种类和数量,图像配准技术作为图像分析和处理的关键,在图像融合、模式识别和计算机视觉等领域作用日益重要,如何高精度、实时配准已成为该领域的研究重点。与此同时,近年来深度学习技术发展迅速,卷积神经网络在图像表示、特征提取等方面显示出独特优势。本文系统综述了基于深度学习技术实现图像配准的相关研究进展,深入讨论了基于深度迭代配准、全监督图像配准、弱/双重监督图像配准、无监督图像配准等典型的基于深度学习的图像配准方法,总结了相关领域研究人员所面临的共同挑战,并指出了未来可能的研究方向。
中图分类号:
陈建明, , 曾祥津, , 钟丽云, , 邸江磊, ∗ , 秦玉文, ∗. 基于深度学习的图像配准方法研究进展综述[J]. 量子电子学报, 2022, 39(6): 899-926.
CHEN Jianming , , ZENG Xiangjin , , ZHONG Liyun , , DI Jianglei , ∗ , QIN Yuwen , ∗. Research progress of image registration methods based on deep learning[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 899-926.
[1]Zitová B, Flusser J.Image registration methods: a survey[J].Image and Vision Computing, 2003, 21(11):977-1000 [2]Mao Xiaoying, Yi Mengxiao, et al.A survey of deep learning methods for medical image registration[J].Journal of Chinese Computer Systems, 2021, 42(08):1706-1714 [3]莫晓盈, 杨锋, 尹梦晓, 等.医学图像配准的深度学习方法综述[J].小型微型计算机系统, 2021, 42(08):1706-1714 [4]Lester H, Arridge S R.A survey of hierarchical non-linear medical image registration[J].Pattern Recognition, 1999, 32(1):129-149 [5]Goshtasby A.Registration of images with geometric distortions[J].IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1):60-64 [6]Friston K J, Ashburner J, Frith C D, et al.Spatial registration and normalization of images[J].Human brain mapping, 1995, 3(3):165-189 [7]Wells W M, Viola P, Atsumi H, et al.Multi-modal volume registration by maximization of mutual information[J].Medical Image Analysis, 1996, 1(1):35-51 [8]Studholme C, Drapaca C, Iordanova B, et al.Deformation-based mapping of volume change from serial brain MRI in the presence of local tissue contrast change[J].IEEE Transactions on Medical Imaging, 2006, 25(5):626-639 [9]Balntas V, Johns E, Tang L, et al. PN-Net: conjoined triple deep network for learning local image descriptors[J]. arXiv e-prints, 2.[J].rXiv:1601.05030., 016:, :- [10] Kuglin C D, Hines D C.The phase correlation image registration method[C], Conference Cybernetics Society, 1975: 163–165. [11]Reddy B S, Chatterji B N.An FFT-based technique for translation,rotation,and scale-invariant image registration[J].IEEE transactions on image processing, 1996, 5(8):1266-1271 [12] Rocco I, Arandjelovic R, Sivic J.Convolutional neural network architecture for geometric matching[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 39-48. [13] Chauhan R, Ghanshala K K, Joshi R C.Convolutional Neural Network (CNN) for image detection and recognition[C]. 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), 2018: 278-282. [14]Long J, Shelhamer E, Darrell T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651 [15] Liu C, Shang Z, Qin A.A multiscale image denoising algorithm based on dilated residual convolution network[C]. Image and Graphics Technologies and Applications, 2019: 193-203. [16]Ren S, He K, Girshick R, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149 [17]LeCun Y, Boser B, Denker J S, et al.Backpropagation applied to handwritten zip code recognition[J].Neural computation, 1989, 1(4):541-551 [18]LeCun Y, Bottou L, Bengio Y, et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE, 1998, 86(11):2278-2324 [19] Gu J, Wang Z, Kuen J, et al.Recent advances in convolutional neural networks[J].[J]. Pattern Recognition, 2018, 77(*):354-377 [20] Krizhevsky A, Sutskever I, Hinton G E.ImageNet classification with deep convolutional neural networks[J]. [J].Advances in neural information processing systems, , 2017, 60(*):84-90 [21]Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv e-prints, 2.[J].rXiv:1409.1556., 014:, :- [22] Szegedy C, Wei L, Yangqing J, et al.Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 1-9. [23] He K, Zhang X, Ren S, et al.Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778. [24] Ronneberger O, Fischer P, Brox T.U-Net: convolutional networks for biomedical image segmentation[C]. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 2015: 234-241. [25] Goodfellow I J, Pouget-Abadie J, Mirza M, et al.Generative adversarial networks[J]. [J].Advances in Neural Information Processing Systems, 2014, 3:(*):2672-2680 [26] Vaswani A, Shazeer N, Parmar N, et al.Attention is all you need[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000–6010. [27] Wu G, Kim M, Wang Q, et al.Unsupervised deep feature learning for deformable registration of MR brain images[C]. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013, 2013: 649-656. [28]Cheng X, Zhang L, Zheng Y.Deep similarity learning for multimodal medical images[J].Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 2018, 6(3):248-252 [29] Sedghi A, O’donnell L J, Kapur T, et al.Image registration: maximum likelihood, minimum entropy and deep learning[J]. [J].Medical Image Analysis, , 2021, 69(*):101939-101939 [30] Simonovsky M, Gutiérrez-Becker B, Mateus D, et al.A deep metric for multimodal registration[C]. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016, 2016: 10-18. [31]Czolbe S, Krause O, Feragen A. DeepSim: semantic similarity metrics for learned image registration[J]. arXiv e-prints, 2.[J].rXiv:2011.05735., 020:, :- [32] Sloan J M, Goatman K A, Siebert J P.Learning rigid image registration-utilizing convolutional neural networks for Medical Image Registration[C]. BIOIMAGING, 2018. [33]Miao S, Wang Z J, Liao R.A CNN regression approach for real-time 2D3D registration[J].IEEE Transactions on Medical Imaging, 2016, 35(5):1352-1363 [34] Miao S, Wang Z J, Zheng Y, et al.Real-time 2D/3D registration via CNN regression[C]. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), 2016: 1430-1434. [35]Salehi S S M, Khan S, Erdogmus D, et al.Real-time deep pose estimation with geodesic loss for image-to-template rigid registration[J].IEEE Transactions on Medical Imaging, 2019, 38(2):470-481 [36]Zou M, Hu J, Zhang H, et al.Rigid medical image registration using learning-based interest points and features[J].Computers, Materials & Continua, 2019, 60(2):511-525 [37]Chee E, Wu Z. AIRNet: Self-supervised affine registration for 3D medical images using neural networks[J]. arXiv e-prints, 2.[J].rXiv:1810.02583., 018:, :- [38]Jiannan Z, Shun M, Wang Z J, et al.Pairwise domain adaptation module for CNN-based 2-D3-D registration[J].Journal of Medical Imaging, 2018, 5(2):1-10 [39] Guo H, Kruger M, Xu S, et al.Deep adaptive registration of multi-modal prostate images[J]. [J].Computerized Medical Imaging and Graphics, 2020, 84: (*):101769-101769 [40] Yang X, Kwitt R, Niethammer M.Fast predictive image registration[C]. Deep Learning and Data Labeling for Medical Applications, 2016: 48-57. [41] Cao X, Yang J, Zhang J, et al.Deformable image registration based on similarity-steered CNN regression[C]. Medical Image Computing and Computer Assisted Intervention?MICCAI 2017, 2017: 300-308. [42]Cao X, Yang J, Zhang J, et al.Deformable image registration using a cue-aware deep regression network[J].IEEE Transactions on Biomedical Engineering, 2018, 65(9):1900-1911 [43]Teng X, Y Chen, Y Zhang, et al.Respiratory deformation registration in 4D-CTcone beam CT using deep learning[J].Quantitative imaging in medicine and surgery, 2020, 11(2):737-748 [44]Koen A J E, Josien P W P.Error estimation of deformable image registration of pulmonary CT scans using convolutional neural networks[J].Journal of Medical Imaging, 2018, 5(2):1-11 [45] Sokooti H, De Vos B, Berendsen F, et al.Nonrigid image registration using multi-scale 3D convolutional neural networks[C]. Medical Image Computing and Computer Assisted Intervention ? MICCAI 2017, 2017: 232-239. [46]Sokooti H, De Vos B, Berendsen F, et al. 3D convolutional neural networks image registration based on efficient supervised learning from artificial deformations[J]. arXiv e-prints, 2.[J].rXiv:1908.10235., 019:, :- [47] Fu Y, Lei Y, Wang T, et al.Biomechanically constrained non-rigid MR-TRUS prostate registration using deep learning based 3D point cloud matching[J]. [J].Medical Image Analysis, 2021, 67(*):101845-101845 [48] Hu Y, Modat M, Gibson E, et al.Label-driven weakly-supervised learning for multimodal deformable image registration[C]. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018: 1070-1074. [49]Blendowski M, Hansen L, Heinrich M P.Weakly-supervised learning of multi-modal features for regularised iterative descent in 3D image registration[J].Medical Image Analysis, 2021, 67(8):101822-101822 [50] Hering A, Kuckertz S, Heldmann S, et al.Enhancing label-driven deep deformable image registration with local distance metrics for state-of-the-Art cardiac motion tracking[C]. Bildverarbeitung für die Medizin 2019, 2019: 309-314. [51] Shao W, Bhattacharya I, Soerensen S J C, et al.Weakly supervised registration of prostate MRI and histopathology images[C]. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, 2021: 98-107. [52]Zhu Q, Sun Y, Wu Y, et al.Whole-brain functional MRI registration based on a semi-supervised deep learning model[J].Medical Physics, 2021, 48(6):2847-2858 [53]Zhu Z, Cao Y, Qin C, et al.Joint affine and deformable three-dimensional networks for brain MRI registration[J].Medical Physics, 2021, 48(3):1182-1196 [54] Wang Y, Zhang J, Cavichini M, et al.Robust content-adaptive global registration for multimodal retinal images using weakly supervised deep-learning framework[J].[J]. IEEE Transactions on Image Processing, 2021, 30(*):3167-3178 [55] Yunzhen P, Xinjian C, Dehui X, et al.Keypoint matching networks for longitudinal fundus image affine registration[C]. Proc.SPIE, 2021. [56]Wang X, Mao L, Huang X, et al.Multimodal MR image registration using weakly supervised constrained affine network[J].Journal of Modern Optics, 2021, 68(13):679-688 [57]Lei Y, Fu Y, Wang T, et al.D-CT deformable image registration using multiscale unsupervised deep learning[J].Physics in Medicine & Biology, 2020, 65(8):085003-085003 [58] Hu Y, Gibson E, Ghavami N, et al.Adversarial deformation regularization for training image registration neural networks[C]. Medical Image Computing and Computer Assisted Intervention–MICCAI 2018, 2018: 774-782. [59] Chen X, Xia Y, Ravikumar N, et al.A deep discontinuity-preserving image registration network[C]. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, 2021: 46-55. [60]Ma Lufan, Luo Feng, Yan Jiangpeng, et al.Advances in deep medical image registration: towards unsupervised learning[J].Journal of Image and Graphics, 2021, 26(09):2037-2057 [61]马露凡, 罗 凤, 严江鹏, 等.深度医学图像配准研究进展: 迈向无监督学习[J].中国图象图形学报, 2021, 26(09):2037-2057 [62] Fan J, Cao X, Yap P-T, et al.BIRNet: brain image registration using dual-supervised fully convolutional networks[J]. [J].Medical Image Analysis, 2019, 54(*):193-206 [63] Cao X, Yang J, Wang L, et al.Deep learning based inter-modality image registration supervised by intra-modality similarity[C]. Machine Learning in Medical Imaging, 2018: 55-63. [64] Yan P, Xu S, Rastinehad A R, et al.Adversarial image registration with application for MR and TRUS image fusion[C]. Machine Learning in Medical Imaging, 2018: 197-204. [65] Arjovsky M, Chintala S, Bottou L.Wasserstein generative adversarial networks[C]. Proceedings of the 34th International Conference on Machine Learning, 2017: 214--223. [66]Qiu L, Ren H.RSegNet: A joint learning framework for deformable registration and segmentation[J].IEEE Transactions on Automation Science and Engineering, 2022, 19(3):2499-2513 [67] Jaderberg M, Simonyan K, Zisserman A, et al.Spatial transformer networks[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2, 2015: 2017–2025. [68] De Vos B D, Berendsen F F, Viergever M A, et al.End-to-End unsupervised deformable image registration with a convolutional neural network[C]. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2017: 204-212. [69] De Vos B D, Berendsen F F, Viergever M A, et al.A deep learning framework for unsupervised affine and deformable image registration[J]. [J].Medical Image Analysis, 2019, 52(*):128-143 [70] Balakrishnan G, Zhao A, Sabuncu M R, et al.An unsupervised learning model for deformable medical image registration[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 9252-9260. [71]Avants B B, Epstein C L, Grossman M, et al.Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain[J].Medical Image Analysis, 2008, 12(1):26-41 [72]Balakrishnan G, Zhao A, Sabuncu M R, et al.VoxelMorph: a learning framework for deformable medical image registration[J].IEEE Transactions on Medical Imaging, 2019, 38(8):1788-1800 [73] Zhao S, Dong Y, Chang E, et al.Recursive cascaded networks for unsupervised medical image registration[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 10599-10609. [74] Zhang L, Zhou L, Li R, et al.Cascaded feature warping network for unsupervised medical image registration[C]. 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021: 913-916. [75] Dalca A V, Balakrishnan G, Guttag J, et al.Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces[J]. [J].Medical Image Analysis, 2019, 57(*):226-236. [76] Dalca A V, Balakrishnan G, Guttag J, et al.Unsupervised learning for fast probabilistic diffeomorphic registration[C]. Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, 2018: 729-738. [77] Mok T C W, Chung A C S.Fast symmetric diffeomorphic image registration with convolutional neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 4643-4652. [78]Chen Q, Li Z, Lui L M. A learning framework for diffeomorphic image registration based on quasi-conformal geometry[J]. arXiv e-prints, 2.[J].rXiv:2110.10580., 021:, :- [79] Kim B, Kim D H, Park S H, et al.CycleMorph: cycle consistent unsupervised deformable image registration[J]. [J].Medical Image Analysis, , 2021, 71(*):102036-102036 [80]Xu Z, Luo J, Yan J, et al.F3RNet: full-resolution residual registration network for deformable image registration[J].International Journal of Computer Assisted Radiology and Surgery, 2021, 16(6):923-932 [81] Han L, Dou H, Huang Y, et al.Deformable registration of brain MR images via a hybrid loss[C]. Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis, 2022: 141-146. [82]Kori A, Krishnamurthi G. Zero Shot Learning for multi-modal real time image registration[J]. arXiv e-prints, 2.[J].rXiv:1908.06213., 019:, :- [83] Xu Z, Yan J, Luo J, et al.Unsupervised multimodal image registration with adaptative gradient guidance[C]. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021: 1225-1229. [84] Sideri-Lampretsa V, Kaissis G, Rueckert D.Multi-modal unsupervised brain image registration using edge maps[C]. 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022: 1-5. [85] Pluim J P W, Maintz J B A, Viergever M A.Image registration by maximization of combined mutual information and gradient information[C]. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2000, 2000: 452-461. [86] Tian Y, Hu Y, Ma Y, et al.Multi-scale U-net with edge guidance for multimodal retinal image deformable registration[C]. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2020: 1360-1363. [87]Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: transformers for image recognition at scale[J]. arXiv e-prints, 2.[J].rXiv:2010.11929., 020:, :- [88]Chen J, He Y, Frey E C, et al. ViT-V-Net: vision transformer for unsupervised volumetric medical image registration[J]. arXiv e-prints, 2.[J].rXiv:2104.06468., 021:, :- [89] Liu Z, Lin Y, Cao Y, et al.Swin transformer: hierarchical vision transformer using shifted windows[C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 9992-10002. [90]Chen J, Frey E C, He Y, et al. TransMorph: transformer for unsupervised medical image registration[J]. arXiv e-prints, 2.[J].rXiv:2111.10480., 021:, :- [91]Wang Y, Qian W, Zhang X. A transformer-based network for deformable medical image registration[J]. arXiv e-prints, 2.[J].rXiv:2202.12104., 022:, :- [92]Wang Z, Delingette H. Attention for Image Registration (AiR): an unsupervised transformer approach[J]. arXiv e-prints, 2.[J].rXiv:2105.02282., 021:, :- [93] Singh N K, Raza K: .Medical image generation using generative adversarial networks: a review[J][J].Medical Image Analysis, 2021:, *(*):76-99 [94]Zhang X, Jian W, Chen Y, et al. Deform-GAN:an unsupervised learning model for deformable registration[J]. arXiv e-prints, 2.[J].rXiv:2002.11430., 020:, :- [95] Arar M, Ginger Y, Danon D, et al.Unsupervised multi-modal image registration via geometry preserving image-to-image translation[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 13407-13416. [96]Qin C, Shi B, Liao R, et al. Unsupervised deformable registration for multi-modal images via disentangled representations[J]. arXiv e-prints, 2.[J].rXiv:1903.09331., 019:, :- [97] Xu Z, Luo J, Yan J, et al.Adversarial uni- and multi-modal stream networks for multimodal image registration[C]. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 2020: 222-232. [98]Hoopes A, Hoffmann M, Fischl B, et al. HyperMorph: amortized hyperparameter learning for image registration[J]. arXiv e-prints, 2.[J].rXiv:2101.01035., 021:, :- [99]Mok T C W, Chung A C S. Conditional deformable image registration with convolutional neural network[J]. arXiv e-prints, 2.[J].rXiv:2106.12673., 021:, :- [100]Jia D, Gao S, Chen Q, et al. A low-rank representation for unsupervised registration of medical images[J]. arXiv e-prints, 2.[J].rXiv:2105.09548., 021:, :- |
[1] | 於康杰, 方波, 李剑敏, 王震, 蔡晋辉, 邬佳璐, 何正龙 . 太赫兹成像三维块匹配自适应Canny边缘检测算法[J]. 量子电子学报, 2023, 40(4): 458-468. |
[2] | 葛宏义 , 王 飞 , 蒋玉英 , 李 丽 , 张 元 , 贾柯柯 , . 基于宽度学习的太赫兹光谱图像小麦霉变识别研究[J]. 量子电子学报, 2023, 40(3): 360-368. |
[3] | 杜天宇, 高 昆∗ , 吴 朝. 光栅相衬 CT 中吸收信号环形伪影的去除方法[J]. 量子电子学报, 2023, 40(1): 40-47. |
[4] | 林惠祖 刘伟涛 孙帅 杜隆坤 常宸 李月刚. 关联成像算法研究进展[J]. 量子电子学报, 2022, 39(6): 863-879. |
[5] | 林 冰 , 樊学强 , 李德奎 , 彭志勇 , 郭忠义∗. 基于深度学习的散射光场成像研究进展[J]. 量子电子学报, 2022, 39(6): 880-898. |
[6] | 马慧敏 ∗ , 檀 磊 , 张京会 , 张鹏飞 , 宁孝梅 , 刘海秋 , 高彦伟 . 基于深度学习的合成孔径成像系统共相误差检测研究综述[J]. 量子电子学报, 2022, 39(6): 927-941. |
[7] | 王孝艳, 王志远, 陈子阳, 蒲继雄∗. 基于深度学习技术从散斑场中识别 多涡旋结构的轨道角动量[J]. 量子电子学报, 2022, 39(6): 955-961. |
[8] | 吴 琼, 马 雷∗. 一种基于 LoG 算子的量子图像边缘检测算法[J]. 量子电子学报, 2022, 39(5): 720-727. |
[9] | 李天秀, 石 磊∗, 王俊辉, 李佳豪. 基于深度学习的量子信号大气衰减系数预测[J]. 量子电子学报, 2022, 39(5): 786-794. |
[10] | 杨一杉, 梁华为, 姚瑶, 陈帅∗. 金属遮挡条件下光子层析快速重构方法研究[J]. 量子电子学报, 2022, 39(4): 558-565. |
[11] | 张杨∗, 程正东, 朱斌. 基于改进 Faster R-CNN 的无人机 小目标检测算法[J]. 量子电子学报, 2022, 39(3): 354-363. |
[12] | 毛仁祥, 常建华, 张树益 李红旭, 张露瑶. 基于3D-MobileNetv2 的多目标实时跟踪框架[J]. 量子电子学报, 2022, 39(3): 364-372. |
[13] | 臧一鸣, 朱尚超, 魏战红∗, 刘志飞, 林小竹, 孙文韬. 一种量子图像伪彩色编码方法[J]. 量子电子学报, 2022, 39(3): 343-353. |
[14] | 洪富祥, 陈冲, 丘仲锋∗. 一种基于机器视觉的无人机同心圆靶精准降落方法[J]. 量子电子学报, 2021, 38(3): 307-315. |
[15] | 陈儒, 杨义勤, 秦凡凯, 孟昭晖, 苗昕扬, 赵昆, 詹洪磊∗. 样本内部缺陷的太赫兹光谱成像与算法优化[J]. 量子电子学报, 2021, 38(3): 265-271. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||