J4 ›› 2017, Vol. 34 ›› Issue (6): 705-712.
李青1,张智明2
收稿日期:
2016-04-29
修回日期:
2016-05-19
出版日期:
2017-11-28
发布日期:
2017-12-11
通讯作者:
张智明
Received:
2016-04-29
Revised:
2016-05-19
Published:
2017-11-28
Online:
2017-12-11
摘要: 我们提出了一种利用腔光力系统产生稳态机械模压缩的方案。该系统包含一个固定镜和两个振动镜,其中振动镜可看作具有三次非线性的非简谐振子。受输入激光驱动的腔内光场对振动镜产生光辐射压力。我们首先研究了腔内光场和机械模的稳态振幅,发现当驱动功率升高时振幅也跟着增大。然后我们研究了机械模的压缩性质,发现在很大参数范围内可以达到压缩。我们还可以通过增强三次非线性强度、驱动激光功率或适当调节驱动场与腔场的失谐量来增强压缩。另外,压缩对热声子噪音具有鲁棒性。
中图分类号:
李青 张智明. 环形腔光力系统中三次非线性产生稳态机械模压缩[J]. J4, 2017, 34(6): 705-712.
[1]Zhu K D, Li W S.Electromagnetically induced transparency mediated by phonons in strongly coupled exciton–phonon systems[J].Appl. Phys. B, 2002, 75(8):861-864[2]Agarwal G S, Huang S.Electromagnetically induced transparency in mechanical effects of light[J].Phys. Rev. A, 2010, 81(4):041803-041803[3]Weis S, Rivi`ere R, Del′eglise S, et al.Optomechanically induced transparency[J].Science, 2010, 330(6010):1520-1523[4]Xiao Y, Yu Y F and Zhang Z M.Controllable optomechanically induced transparency and ponderomotive squeezing in an optomechanical system assisted by an atomic ensemble[J].Opt. Express, 2014, 22(15):17979-17989[5]Marquardt F, Chen J P, Clerk A A, et al.Quantum theory of cavity-assisted sideband cooling of mechanical motion[J].Phys. Rev. Lett., 2007, 99(9):093902-093902[6]Wilson-Rae I, Nooshi N, Dobrindt J, et al.Cavity-assisted backaction cooling of mechanical resonators[J].New J. Phys., 2008, 10(9):095007-095007[7]Mazzola L, Paternostro M.Distributing fully optomechanical quantum correlations[J].Phys. Rev. A, 2011, 83(6):062335-062335[8]Genes C, Vitali D, Tombesi P.Emergence of atom-light-mirror entanglement inside an optical cavity[J].Phys. Rev. A, 2008, 77(5):050307-050307[9]Palomaki T A, Harlow J W, et al.Coherent state transfer between itinerant microwave fields and a mechanical oscillator[J].Nature, 2013, 495(7440):210-214[10]Wang Y D, Clerk A A.Using interference for high fidelity quantum state transfer in optomechanics[J].Phys. Rev. Lett., 2012, 108(15):153603-153603[11]Georgiades N P, Polzik E S, et al.Nonclassical excitation for atoms in a squeezed vacuum[J].Phys. Rev. Lett., 1995, 75(19):3426-3426[12]Alebachew E, Fesseha K.Interaction of a two-level atom with squeezed light[J].Opt. Commun., 2007, 271(1):154-161[13]Paternostro M.Engineering nonclassicality in a mechanical system through photon subtraction[J].Phys. Rev. Lett., 2011, 106(18):183601-183601[14]Vacanti G, Paternostro M, et al.Nonclassicality of optomechanical devices in experimentally realistic operating regimes[J].Phys. Rev. A, 2013, 88(1):013851-013851[15]Li J, Gr¨oblacher S, Paternostro M.Enhancing non-classicality in mechanical systems[J].New J. Phys., 2013, 15(3):033023-033023[16]Tan H, Bariani F, et al.Generation of macroscopic quantum superpositions of optomechanical oscillators by dissipation[J].Phys. Rev. A, 2013, 88(2):023817-023817[17]Brooks D W, Botter T, et al.Non-classical light generated by quantum-noise-driven cavity optomechanics[J].Nature, 2012, 488(7412):476-480[18]Safavi-Naeini A H, Gr¨oblacher S, et al.Squeezed light from a silicon micromechanical resonator[J].Nature, 2013, 500(7461):185-189[19]Verlot P, Tavernarakis A, et al.Backaction amplification and quantum limits in optomechanical measurements[J].Phys. Rev. Lett., 2010, 104(13):133602-133602[20]Gavartin E, Verlot P, Kippenberg T J.A hybrid on-chip optomechanical transducer for ultrasensitive force measurements[J].Nat. Nanotech., 2012, 7(8):509-514[21]Purdy T P, Yu P L, et al.Strong optomechanical squeezing of light[J].Phys. Rev. X, 2013, 3(3):031012-031012[22]Abramovici A, Althouse W E, et al.LIGO: The laser interferometer gravitational-wave observatory[J].Science, 1992, 256(5055):325-333[23]Caves C M, Thorne K S, et al.On the measurement of a weak classical force coupled to a quantummechanical oscillatorI. Issues of principle[J].Rev. Mod. Phys., 1980, 52(2):341-341[24]Barish B C, Weiss R.LIGO and the Detection of Gravitational Waves[J].Phys. Today, 1999, 52(1):44-50[25]Mari A, Eisert J.Gently modulating optomechanical systems[J].Phys. Rev. Lett., 2009, 103(21):213603-213603[26]J¨ahne K, Genes C, et al.Cavity-assisted squeezing of a mechanical oscillator[J].Phys. Rev. A, 2009, 79(6):063819-063819[27]Seok H, Buchmann L F, et al.Generation of mechanical squeezing via magnetic dipoles on cantilevers[J].Phys. Rev. A, 2012, 85(3):033822-033822[28]Clerk A A, Marquardt F, Jacobs K.Back-action evasion and squeezing of a mechanical resonator using a cavity detector[J].New J. Phys., 2008, 10(9):095010-095010[29]Asjad M, Agarwal G S, et al.Robust stationary mechanical squeezing in a kicked quadratic optomechanical system[J].Phys. Rev. A, 2014, 89(2):023849-023849[30]L¨u X Y, Liao J Q, et al.Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity[J].Phys. Rev. A, 2015, 91(1):013834-013834[31]Schliesser A, Arcizet O, et al.Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit[J].Nature Phys., 2009, 5(7):509-514[32]Vitali D, Gigan S, et al.Optomechanical entanglement between a movable mirror and a cavity field[J].Phys. Rev. Lett., 2007, 98(3):030405-030405[33]Li M, Pernice W H P, Tang H X.Broadband all-photonic transduction of nanocantilevers[J].Nat. nanotech., 2009, 4(6):377-382[34]Rips S, Kiffner M, et al.Steady-state negative Wigner functions of nonlinear nanomechanical oscillators[J].New J. Phys., 2012, 14(2):023042-023042[35] Li H, Chen Y, et al.Multichannel cavity optomechanics for all-optical amplification of radio frequency signals[J].Nat. Commun., 2012, 3(1):1091-1091[36]Jacobs K, Landahl A J.Engineering giant nonlinearities in quantum nanosystems[J].Phys. Rev. Lett., 2009, 103(6):067201-067201[37]Huang S, Agarwal G S.Entangling nanomechanical oscillators in a ring cavity by feeding squeezed light[J].New J. Phys., 2009, 11(10):103044-103044[38]Schulze R J, Genes C, Ritsch H.Optomechanical approach to cooling of small polarizable particles in a strongly pumped ring cavity[J].Phys. Rev. A, 2010, 81(6):063820-063820 |
[1] | 摆海龙, 白金海, 胡栋, 王宇. 用于原子干涉重力仪的小型频率合成器设计与实现[J]. 量子电子学报, 2023, 40(4): 510-518. |
[2] | 李嵩松. 玻色-爱因斯坦凝聚体中三体和四体相互作用对自旋压缩和量子纠缠的影响研究[J]. 量子电子学报, 2023, 40(4): 519-527. |
[3] | 王晟, 方晓明, 林昱, 张天兵, 冯宝, 余杨, 王乐 . 四强度诱骗态相位匹配量子密钥分发协议[J]. 量子电子学报, 2023, 40(4): 541-545. |
[4] | 贾 玮 , 张强强 , 卞宇翔 , 李 威 . E91-QKD 中集体攻击上限的研究[J]. 量子电子学报, 2023, 40(3): 407-414. |
[5] | 曹 睿 , 袁晨智 , 沈 思 , 张子昌 , 范云茹 , 李加睿 , 李 浩 , 尤立星 , 周 强 , 王子竹∗. 三维时间片最大纠缠态的最优检测[J]. 量子电子学报, 2023, 40(1): 85-94. |
[6] | 唐世彪∗ , 李 志 , 郑伟军 , 张万生 , 高 松 , 李亚麟 , 程 节 , 蒋连军. 量子密钥分发系统防死时间攻击方案研究[J]. 量子电子学报, 2023, 40(1): 95-103. |
[7] | 阮志强, 张 磊, 赵欣瑜, 江兴方∗. 一种新型圆形掺杂光子晶体光纤负色散特性的分析[J]. 量子电子学报, 2023, 40(1): 133-138. |
[8] | 谈志杰 杨海瑞 喻虹 韩申生. X光强度关联衍射成像技术研究进展[J]. 量子电子学报, 2022, 39(6): 851-862. |
[9] | 林惠祖 刘伟涛 孙帅 杜隆坤 常宸 李月刚. 关联成像算法研究进展[J]. 量子电子学报, 2022, 39(6): 863-879. |
[10] | 王孝艳, 王志远, 陈子阳, 蒲继雄∗. 基于深度学习技术从散斑场中识别 多涡旋结构的轨道角动量[J]. 量子电子学报, 2022, 39(6): 955-961. |
[11] | 李能菲 孙宇松 黄见. 余弦编码复用高空间分辨率关联成像研究[J]. 量子电子学报, 2022, 39(6): 973-982. |
[12] | 戴 攀, 庞志广, 李 剑, 王 琴∗. 基于纠缠源的非线性贝尔不等式研究[J]. 量子电子学报, 2022, 39(5): 761-767. |
[13] | 赵良圆 曹凌云 梁洪源 韦峥 伍千军 钱建林 韩正甫. 基于不同光纤的波分复用型量子密钥分配研究[J]. 量子电子学报, 2022, 39(5): 776-785. |
[14] | 张 瑞, 梅大江, ∗, 石小兔, 马荣国, 张庆礼, ∗, 窦仁勤, 刘文鹏, . YAG 晶体的位错研究进展[J]. 量子电子学报, 2022, 39(5): 687-706. |
[15] | 王晶晶, 刘玉洁, 郑丽∗. 基于超强耦合腔光力系统制备的 宏观量子态特性分析[J]. 量子电子学报, 2022, 39(4): 598-604. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||