[1] Günes S, Neugebauer H, Sariciftci N S. Conjugated polymer-based organic solar cells [J]. Chem Rev, 2007, 107:1324?1338. [2] Yip H L, Jen K Y. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells [J]. Energy Environ Sci, 2012, 5:5994?6011. [3] Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A. Graphene: the new two-dimensional nanomaterial [J]. Angew Chem Int Ed, 2009, 48:7752?7777.[4] Tang L, Wang Y, Li Y, Feng H, Lu J, Li J. Preparation, structure and electrochemical properties of graphene modified electrode [J]. Adv Funct Mater, 2009, 19:2782?2789.[5] Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics [J]. Nat Photonics, 2010, 4:611?622.[6] Bae S, Kim H, Lee Y, Xu X F, Park J -S, Zheng Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes [J]. Nat Nanotechnol, 2010, 5:574?578.[7] Wang X, Zhi L J, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells [J]. Nano Lett, 2008, 8:323?327.[8] Yin Z Y, Sun S Y, Salim T, Wu S X, Huang X A, He Q Y, et al, Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrode [J]. ACS Nano, 2010, 4:5263–5268.[9] Lee Y -Y, Tu K -H, Yu C -C, Li S -S, Hwang J -Y, Lin C -C, et al. Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method [J]. ACS Nano, 2011, 5:6564?6570.[10] Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S G, Zhang X Y, et al. Organic photovoltaic devices based on a novel acepptor material: graphene [J]. Adv Mater, 2008, 20:3924–3930.[11] Wang H T, He D W, Wang Y S, Liu Z Y, Wu H P, Wang J G. Organic photovoltaic devices based on graphene as an electron-acceptor material and P3OT as a donor material [J]. Phys Status Solidi A, 2011, 208:2339?2343.[12] Guo C, Yang H, Sheng Z, Lu Z, Song Q, Li C. Layered graphene/quantum dots for photovoltaic devices [J]. Angew Chem Int Ed, 2010, 49:3014–3017.[13] Yun J -M, Yeo J -S, Kim J, Jeong H -G, Kim D -Y, Noh Y -J. et al. Solution-processable reduced graphene oxide as a novel alternative to PEDOT: PSS hole transport layers for highly efficient and stable polymer solar cells [J]. Adv Mater, 2011, 23:4923?4928.[14] Liu X, Kim H, Guo L. Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells [J]. Organic Electronics, 2013, 14:591–598. [15] Lewerenz H J. Development of copper indium disulfide into a solar material [J]. Sol Energ Mat Sol C, 2004, 83:395–407. [16] Klenk R, Klaer J, Scheer R, Lux-Steiner MC, Luck I, Meyer N, et al. Solar cells based on CuInS2?an overview [J]. Thin Solid Films, 2005, 480–481:509–514.[17] Meng W, Zhou X, Qiu Z, Liu C, Chen J, Yue W, et al. Reduced graphene oxide-supported aggregates of CuInS2 quantum dots as an effective hybrid electron acceptor for polymer-based solar cells [J]. Carbon, 2016, 96:53–540.[18] Binsma J J M, Giling L J, Bloem J. Luminescence of CuInS2: ?. The broad band emission and its dependence on the defect chemistry [J]. J Lumin, 1982, 27:35–53.[19] Ueng H Y, Hwang H L. The defect structure of CuInS2. part ? intrinsic defects [J]. J Phys Chem Solid, 1989, 50:1297–1305.[20] Yoshino K, Nomoto K, Kinoshita A, Ikari T, Akaki Y, Yoshitake T. Dependence of Cu/In ratio of structural and electrical characterization of CuInS2 crystal [J]. J Mater Sci: Mater Electron, 2008, 19:301–304.[21] Liu Q, Liu Z, Zhang X, Yang L, Zhang N, Pan G, et al. Polymer photovoltaic cells based on solution-processable graphene and P3HT [J]. Adv Funct Mater, 2009, 19:894–904.[22] Dloczik L, Ileperuma O, Lauermann I, Peter L M, Ponomarev E A, Redmond G, Shaw N J, Uhlendorf I. Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy [J]. J Phys Chem B, 1997, 101:10281–10289.[23] Dunn H K, Peter L M. How efficient is electron collection in dye-sensitized solar cells comparison of different dynamic methods for the determination of the electron diffusion length [J]. J Phys Chem C, 2009, 113:4726–4731.[24] Qi J J, Chen J W, Meng W L, Wu X Y, Liu C W, Yue W J, et al. Recent advances in hybrid solar cells based on metal oxide nanostructures [J]. Synth Metals, 2015, http://dx.doi.org/10.1016/j.synthmet.2016.04.027.[25] Cui Q, Liu C W, Wu F, Yue W J, Qiu Z L, Zhang H, et al. Performance improvement in polymer/ZnO nanoarray hybrid solar cells by formation of ZnO/CdS-core/shell heterostructures [J]. J Phys Chem C, 2013, 117:5626?5637.[26] Noone K M, Subramaniyan S, Zhang Q F, Cao G Z, Jenekhe S A, Ginger D S. Photoinduced charge transfer and polaron dynamics in polymer and hybrid photovoltaic thin films: organic vs inorganic acceptors [J]. J Phys Chem C, 2011, 115:24403–24410.[27] Wong D K -P, Ku C -H, Chen Y -R, Chen G -R, Wu J -J. Enhancing electron collection efficiency and effective diffusion length in dye-sensitized solar cells [J]. Chem Phys Chem, 2009, 10:2698–2702. |