量子电子学报

• 基础光学 • 上一篇    下一篇

一种凸非球面反射镜的检验方法

胡文琦,叶璐,张金平,郑列华   

  1. 中国科学院上海技术物理研究所,上海 200080
  • 出版日期:2019-05-28 发布日期:2019-05-14
  • 作者简介:胡文琦 (1990 - ),女,四川人,硕士,助理研究员,主要从事光学检测及光学加工方面的研究。E-mail:734770746@qq.com

A test method for convex aspheric reflector mirror

HU Wenqi, YE Lu,ZHANG Jinping, ZHENG Liehua   

  • Published:2019-05-28 Online:2019-05-14

摘要: 凸非球面的面形检测是光学检验中的一大难题,提出了一种利用半反半透凹面自准单透镜检验凸非球面反射镜的方法。单透镜由凸、凹两个球面构成,凹面为半反半透自准面,使经非球面反射的光线可沿原路返回,从而实现补偿检验。该方法具有结构简单、检测能力强、无中心遮拦等优点。基于三级像差理论推导了检验系统的初始结构计算公式,给出了不同凸非球面反射镜检验系统的关键参数关系曲线。以 、 的凸非球面反射镜为例,求解相应初始结构参数,利用Zemax软件优化得到了系统残余波像差小于 。设计和仿真结果表明所提出的半反半透凹面自准单透镜的检验方法有利于检验各类凸非球面反射镜。

关键词: 几何光学, 凸非球面反射镜检测, 半反半透透镜, 三级像差理论, 光学系统设计

Abstract: Convex aspheric mirror surface is a major problem in optical inspection. A method for testing a convex aspheric mirror is proposed by using comcavity autocollomatic transflective lens. The transflective lens used is composed of convex and concave two spherical surfaces. The concave surface is autocollomatic semi reverse half surface. With the autocollomatic semi reverse half surface design, the wavefront can be compensated and reflected by the aspheric surface. The light can be returned along the original path to achieve compensation inspection. The method has the advantages of simple structure, strong detection capability, no center obstruction. Based on the third-order aberration theory, calculation formula of the initial structure of inspection system is deduced, and the key parameters of different convex aspheric mirror inspection systems are obtained. The detection optical path of a convex reflection aspherical surface , is designed, and the initial structure parameters are optimized using Zemax software. Wavefront aberration of system is .The design and simulation results show that the proposed method for testing comcavity autocollomatic transflective lens is very beneficial to the inspection of all kinds of convex aspherical mirrors.

Key words: geometrical optics, testing of convex aspheric mirror, transflective lens, third-order aberration theory, optical systems design