[1] |
Brassard G, Lutkenhaus N, Mor T, et al. Limitations on practical quantum cryptography[J]. Physical Review Letters, 2000, 85(6): 1330-1333.
|
[2] |
Sun S H, Liang L M. Experimental demonstration of an active phase randomization and monitor module for quantum key distribution[J]. Applied Physics Letters, 2012, 101(7): 071107.
|
[3] |
Chen Zhi Xin, Tang Zhi Lie, Liao Chang Jun, et al. Practical security problem of six states QKD protocol[J]. Acta Photonica Sinica(光子学报), 2006, 35(1): 126–129(in Chinese).
|
[4] |
Jiang M S, Sun S H, Li C Y, et al. Wavelength selected photon-number-splitting attack against “plug-and-play” quantum key distribution systems with Decoy States[J]. Physical Review A, 2012, 86(3): 032310.
|
[5] |
Wang X B. A decoy-state protocol for quantum cryptography with 4 intensities of coherent light[J]. Physical Review A, 2005, 72(1): 012322.
|
[6] |
Li HongXin, Chi YangGuang, Han Yu, et al. Research on PNS attack for decoy quantum key distribution scheme[J]. Journal of Cryptography(密码学报), 2018, 5(1): 1-12(in Chinese).
|
[7] |
Hwang W Y. Quantum key distribution with high loss: toward global secure communication[J]. Physical Review Letters, 2003, 91(5): 057901.
|
[8] |
Lo H K, Ma X, Chen K. Decoy state quantum key distribution[J]. Physical Review Letters, 2005, 94(23): 230504.
|
[9] |
Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography[J]. Physical Review Letters, 2005, 94(23): 230503.
|
[10] |
Hu J Z, Wang X B. Reexamination of the decoy-state quantum key distribution with an unstable source[J]. Physical Review A, 2010, 82(1): 012331.
|
[11] |
Wang X B, Yang L, Peng C Z, et al. Decoy-state quantum key distribution with both source errors and statistical fluctuations[J]. New Journal of Physics, 2009, 11(7): 075006.
|
[12] |
Sun Wei, Yin Hualei, Sun Xiangxiang, et al. Non-orthogonal coding decoy quantum key distribution based on coherent superposition state[J]. Acta Physica Sinica(物理学报), 2016, 65(8): 080301(in Chinese).
|
[13] |
Yu Hao, Jia Wei, Zan Jiye, et al. A novel BB84-based quantum secret sharing with decoy states[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2019, 36(1): 348-353(in Chinese).
|
[14] |
Inamori H, N. Lütkenhaus, Mayers D. Unconditional security of practical quantum key distribution[J]. European Physical Journal D, 2007, 41(3): 599-627.
|
[15] |
Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2012, 108(13): 130503.
|
[16] |
Tamaki K, Lo H K , Fung C H F , et al. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw[J]. Physical Review A, 2012, 85(4): 042307.
|
[17] |
Lucamarini M, Yuan Z L, Dynes J F, et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters[J]. Nature (London) , 2018, 557: 400-403.
|
[18] |
Bennett C H, Brassard G. Quantum cryptography:public key distribution and coin tossing[C]. IEEE International Conference on Computers, Systems and Signal Processing. New York: IEEE Press, 1984: 175–179.
|
[19] |
Bennett C H. Quantum cryptography using any two nonorthogonal states[J]. Physical Review Letters, 1992, 68(21): 3121-3124.
|
[20] |
Ma X F, Zeng P, Zhou H Y. Phase-matching quantum key distribution[J]. Physical Review X, 2018, 8(3): 031043.
|