[1] |
Michael K, Christian R, Joseph M L, et al. Quantum optical microcombs [J]. Nature Photonics, 2019, 4(13): 170-179.
|
[2] |
Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics[J]. Nature, 2001, 409(6816): 46-52.
|
[3] |
Gisin N, Thew R. Quantum communication[J]. Nature Photonics, 2006, 55(2): 298-303.
|
[4] |
Clemmen S, Phan H K, Bogaerts W, et al. Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators [J]. Optics Express, 2009, 17 (19): 16558–16570.
|
[5] |
Sipe J E, Helt L G, Liscidini M, et al. Spontaneous four-wave mixing in micro-ring resonators [J]. Optics Letters, 2010, 35 (18): 3006–3008.
|
[6] |
Azzini S, Grassani D, Galli M, et al. From classical four-wave mixing to parametric fluorescence in silicon microring resonators [J]. Optics Letters, 2012, 37 (18): 3807–3809.
|
[7] |
Zhao W L, Niu W, Yang Z, et al. Formal worst case analysis of insertion loss in Torus-based optical networks-on-chip[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2014, 31(2): 245-251(in Chinese).
|
[8] |
Guo Y, Zhang W, Lv N, et al. The impact of nonlinear losses in the silicon microring cavities on CW pumping correlated photon pair generation [J]. Optics Express, 2014, 22 (3): 2620–2631.
|
[9] |
Little B E, Chu S T, Haus H A, et al. Microring resonator channel dropping filters [J]. Journal of Lightwave Technology, 1997, 15 (6): 998–1005.
|
[10] |
Xiao S, Khan M H, Shen H, et al. Compact silicon microring resonators with ultralow propagation loss in the C band. [J]. Optics Express, 2007, 15 (22): 14467–14475.
|
[11] |
Li Y, Maslov A V, Limberopoulos N I, et al. Spectrally resolved resonant propulsion of dielectric microspheres [J]. Laser and Photonics Reviews, 2015, 9 (2): 263–273.
|
[12] |
Rong H, Liu A, Nicolaescu R, et al. Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide [J]. Applied Physics Letters, 2004, 85 (12): 2196–2198.
|
[13] |
Dimitropoulos D, Jhaveri R, Claps R, et al. Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides[J]. Applied Physics Letters, 2005, 86(7): 711151.
|
[14] |
Hu H, Palushani E, Galili M, et al. 640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion [J]. Optics Express, 2010, 18 (10): 9961– 9966.
|
[15] |
Gorin A, Jaouad A, Grondin E, et al. Fabrication of silicon nitride waveguides for visible-light using PECVD: A study of the effect of plasma frequency on optical properties [J]. Optics Express, 2008, 16 (18): 13509-13516.
|
[16] |
Noborisaka J, Motohisa J, Hara S, et al. Fabrication and characterization of freestanding GaAs/AlGaAs core-shell nanowires and AlGaAs nanotubes by using selective-area metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2005.
|
[17] |
Sun X H, Li C P, Wong W K, et al. Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes [J]. Journal of the American Chemical Society, 2002, 124 (48): 14464–14471.
|