量子电子学报 ›› 2020, Vol. 37 ›› Issue (2): 188-195.
陈遵一,侯奎
收稿日期:
2019-10-12
修回日期:
2019-11-14
出版日期:
2020-03-28
发布日期:
2020-03-28
通讯作者:
陈遵一
E-mail:chzy@ahjzu.edu.cn
作者简介:
陈遵一(1978-),安徽六安人,硕士,讲师,主要从事量子信息与量子计算方面的研究。
E-mail:chzy@ahjzu.edu.cn
基金资助:
CHEN Zunyi, HOU Kui
Received:
2019-10-12
Revised:
2019-11-14
Published:
2020-03-28
Online:
2020-03-28
摘要: 提出了两种基于Bell态量子信道的直接远程制备任意复系数二量子比特态的方案。第一个为控制远程制备方案,发送方可以以一定的概率使两个接收方中的任意一位获得初始态,此过程发送方需执行三粒子投影测量和控制方Hadamard门操作。在第二个方案中,初始态的信息由两个独立的发送方共享,当且仅当两个发送方合作,接收方才可在其粒子上重建初始态,此方案需要执行四粒子投影测量。结果表明,两种方案的总成功概率均可达1,方案中的量子资源仅是最简单的Bell纠缠态,且整个操作过程简化灵活。
中图分类号:
陈遵一 侯奎. 基于Bell态信道直接远程制备任意二量子比特态[J]. 量子电子学报, 2020, 37(2): 188-195.
CHEN Zunyi, HOU Kui . Deterministic remote preparation of arbitrary two-qubit states Via Bell states channel[J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 188-195.
[1] Bennett C H, Brassard G, Cr E Peau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70(13): 1895-1899. [2] Lo H. Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity[J]. Physical Review A, 2000, 62(1): 12313. [3] Pati A K. Minimum classical bit for remote preparation and measurement of a qubit[J]. Physical Review A, 2000, 63(1): 14302. [4] Bennett C H, Divincenzo D P, Shor P W, et al. Remote state preparation[J]. Physical Review Letters, 2001, 87(7): 77902. [5] LI Pu, Man Zhongxiao, Xia Yunjie. Joint remote preparation of an arbitrary three-qubit state via generalized Bell states channel[J]. Acta Sinica Quantum Optica(量子光学学报), 2012, 18(2): 128-135(in Chinese). [6] Wei J, Shi L, Ma L, et al. Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states[J]. Quantum Information Processing, 2017, 16(10): 1-12. [7] Ma P, Chen G, Li X, et al. Efficient scheme for remote preparation of an arbitrary tripartite four-particle entangled state[J]. International Journal of Modern Physics B, 2018, 32(3): 1850023. [8] Xue Y, Shi L, Da X, et al. Remote preparation of four-qubit states via two-qubit maximally entangled states[J]. Quantum Information Processing, 2019, 18(4): 1-16. [9] Peters N A, Barreiro J T, Goggin M E, et al. Remote state preparation: arbitrary remote control of photon polarization[J]. Physical Review Letters, 2005, 94(15): 150502. [10] Peng X, Zhu X, Fang X, et al. Experimental implementation of remote state preparation by nuclear magnetic resonance[J]. Physics Letters A, 2003, 306(5-6): 271-276. [11] Liu W, Wu W, Ou B, et al. Experimental remote preparation of arbitrary photon polarization states[J]. Physical Review A, 2007, 76(2): 22308. [12] Dheur M, Vest B, Devaux E L I S, et al. Remote preparation of single-plasmon states[J]. Physical Review B, 2017, 96(4): 45432. [13] Peng J, Bai M, Mo Z. Bidirectional controlled joint remote state preparation[J]. Quantum Information Processing, 2015, 14(11): 4263-4278. [14] Kui H, Jing W, Hao Y, et al. Multiparty-controlled remote preparation of two-particle state[J]. Communications in Theoretical Physics, 2009, 52(5): 848-852. [15] Wei J, Shi L, Xu Z, et al. Probabilistic controlled remote state preparation of an arbitrary two-qubit state via partially entangled states with multi parties[J]. International Journal of Quantum Information, 2018, 16(1): 1850001. [16] Chen W, Ma S, Qu Z. Controlled remote preparation of an arbitrary four-qubit cluster-type state[J]. Chinese Physics B, 2016, 25(10): 100304. [17] Wang D, Zha X, Lan Q. Joint remote state preparation of arbitrary two-qubit state with six-qubit state[J]. Optics Communications, 2011, 284(24): 5853-5855. [18] Hou K. Joint remote preparation of four-qubit cluster-type states with multiparty[J]. Quantum Information processing, 2013, 12(12): 3821-3833. [19] Wu W, Liu W, Chen P, et al. Deterministic remote preparation of pure and mixed polarization states[J]. Physical Review A, 2010, 81(4): 42301. [20] An N B, Bich C T, Van Don N. Deterministic joint remote state preparation[J]. Physics Letters A, 2011, 375(41): 3570-3573. [21] Zhan Y. Deterministic remote preparation of arbitrary two-and three-qubit states[J]. Europhysics Letters, 2012, 98(4): 40005. [22] Qu Z, Wu S, Wang M, et al. Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels[J]. Quantum Information Processing, 2017, 16(12): 1-25. [23] Zhang P, Ma S, Gong L. Deterministic remote preparation via the χ state in noisy environment[J]. International Journal of Theoretical Physics, 2019,58(9): 2795-2809. |
[1] | 摆海龙, 白金海, 胡栋, 王宇. 用于原子干涉重力仪的小型频率合成器设计与实现[J]. 量子电子学报, 2023, 40(4): 510-518. |
[2] | 李嵩松. 玻色-爱因斯坦凝聚体中三体和四体相互作用对自旋压缩和量子纠缠的影响研究[J]. 量子电子学报, 2023, 40(4): 519-527. |
[3] | 王晟, 方晓明, 林昱, 张天兵, 冯宝, 余杨, 王乐 . 四强度诱骗态相位匹配量子密钥分发协议[J]. 量子电子学报, 2023, 40(4): 541-545. |
[4] | 贾 玮 , 张强强 , 卞宇翔 , 李 威 . E91-QKD 中集体攻击上限的研究[J]. 量子电子学报, 2023, 40(3): 407-414. |
[5] | 曹 睿 , 袁晨智 , 沈 思 , 张子昌 , 范云茹 , 李加睿 , 李 浩 , 尤立星 , 周 强 , 王子竹∗. 三维时间片最大纠缠态的最优检测[J]. 量子电子学报, 2023, 40(1): 85-94. |
[6] | 唐世彪∗ , 李 志 , 郑伟军 , 张万生 , 高 松 , 李亚麟 , 程 节 , 蒋连军. 量子密钥分发系统防死时间攻击方案研究[J]. 量子电子学报, 2023, 40(1): 95-103. |
[7] | 阮志强, 张 磊, 赵欣瑜, 江兴方∗. 一种新型圆形掺杂光子晶体光纤负色散特性的分析[J]. 量子电子学报, 2023, 40(1): 133-138. |
[8] | 谈志杰 杨海瑞 喻虹 韩申生. X光强度关联衍射成像技术研究进展[J]. 量子电子学报, 2022, 39(6): 851-862. |
[9] | 林惠祖 刘伟涛 孙帅 杜隆坤 常宸 李月刚. 关联成像算法研究进展[J]. 量子电子学报, 2022, 39(6): 863-879. |
[10] | 王孝艳, 王志远, 陈子阳, 蒲继雄∗. 基于深度学习技术从散斑场中识别 多涡旋结构的轨道角动量[J]. 量子电子学报, 2022, 39(6): 955-961. |
[11] | 李能菲 孙宇松 黄见. 余弦编码复用高空间分辨率关联成像研究[J]. 量子电子学报, 2022, 39(6): 973-982. |
[12] | 戴 攀, 庞志广, 李 剑, 王 琴∗. 基于纠缠源的非线性贝尔不等式研究[J]. 量子电子学报, 2022, 39(5): 761-767. |
[13] | 赵良圆 曹凌云 梁洪源 韦峥 伍千军 钱建林 韩正甫. 基于不同光纤的波分复用型量子密钥分配研究[J]. 量子电子学报, 2022, 39(5): 776-785. |
[14] | 张 瑞, 梅大江, ∗, 石小兔, 马荣国, 张庆礼, ∗, 窦仁勤, 刘文鹏, . YAG 晶体的位错研究进展[J]. 量子电子学报, 2022, 39(5): 687-706. |
[15] | 王晶晶, 刘玉洁, 郑丽∗. 基于超强耦合腔光力系统制备的 宏观量子态特性分析[J]. 量子电子学报, 2022, 39(4): 598-604. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||