量子电子学报 ›› 2020, Vol. 37 ›› Issue (5): 601-614.

• “激光大气传输与探测”专辑 • 上一篇    下一篇

非球形粒子光散射计算、测量及其应用


王颖1,2,3, 刘东1,2   


  1. 1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院大气光学重点实验室, 安徽合肥230001; 2 先进激光技术安徽省实验室, 安徽合肥230037; 3 中国科学技术大学研究生院科学岛分院, 安徽合肥230026
  • 收稿日期:2020-08-19 修回日期:2020-07-12 出版日期:2020-09-28 发布日期:2020-09-28
  • 通讯作者: E-mail: dliu@aiofm.cas.cn
  • 作者简介:王颖( 1995 - ), 女, 安徽合肥人, 研究生, 主要从事非球形粒子散射方面的研究。E-mail: yyyw@mail.ustc.edu.com
  • 基金资助:
    Supported by Key Collaborative Research Program of the Alliance of International Science Organizations (“一带一路” 国际科学组织联 盟联合研究合作专项资助, ANSO-CR-KP-2020-09)

Light scattering calculation and measurement of non-spherical particles and its application

WANG Ying1,2,3, LIU Dong1,2   


  1. 1 Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 2 Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China; 3 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
  • Received:2020-08-19 Revised:2020-07-12 Published:2020-09-28 Online:2020-09-28

摘要: 粒子光散射在众多科学领域有着极其重要的作用, 早期关于粒子光散射的计算大多基于球形粒子假设。 但粒子的形状通常并不是完美的球形, 有些粒子还会聚集在一起, 使得外形结构变得更加复杂。Lorentz-Mie 散射 理论通常用来计算球形粒子散射, 对于非球形和复杂结构粒子的散射相函数计算则会带来较大偏差。此外, 球形 粒子假设对于退偏振效应也无法进行有效的分析。随着计算机算力的提升和算法的改进, 非球形粒子的散射问题 除了有限的观测实验研究外, 大多采用数值计算的方法。综述了非球形粒子散射的数值计算方法, 分析了各自的 优缺点, 并介绍了非球形粒子光散射实验室测量方法, 以及其在光学、地球物理学、遥感科学、天体物理学、工 程学、医学和生物学等领域中的应用。

关键词: 物理光学, 非球形粒子散射, T 矩阵法, 离散偶极子近似法, 分离变量法

Abstract: The characteristics of light scattering by particles play an important role in various scientific fields. The early calculation of particle light scattering is mostly based on the hypothesis of spheroidal particles. However, the shape of the particles is not always theoretically spherical, and the aggregating of the particles makes the shape more complex. Lorentz-Mie scattering theory is usually used to calculate the scattering properties of spheroidal particles, but the calculation of scattering phase function of nonspherical and aggregated particles with the theory will cause larger biases. In addition, the hypothesis of spheroidal particles also fails to effectively analyze the depolarization effect. With the increase of computational power and the improvement of numerical methods, the scattering solutions of non-spherical particles are mostly solved by numerical methods in addition to the limited laboratory experiments. The numerical methods for scattering of non-spherical particles are reviewed, and their advantages and disadvantages are analyzed. The laboratory measurement methods of light scattering by non-spherical particles are also introduced, as well as their applications in the fields of optics, geophysics, remote sensing, astrophysics, engineering, medicine and biology.

Key words: physical optics, non-spherical particle scattering, T matrix, discrete dipole approximation method, separation of variables method

中图分类号: