[1] Shor, P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer [J]. SIAM Journal on Computing, 1997, 26(5): 1484–1509.[2] Grover, L K. A fast quantum mechanical algorithm for database search [C]. Twenty-eighth Amc Symposium on Theory of Computing, Philadelphia PA USA: STOC, 1996: 212–219.[3] Bennett C, Brassard G. Quantum Cryptography: Public Key Distribution and Coin Tossing [C]. Theory Computer Science, Bangalore India: IEEE, 1984: 175-179.[4] Lo H K, Ma X F, Chen K. Decoy state quantum key distribution [J]. Physical Review Letters, 2005, 94(23): 230504.[5] Horikiri T, Kobayashi T. Decoy state quantum key distribution with a photon number resolved heralded single photon source [J]. Physical Review A, 2006, 73(3): 032331.[6] Crepeau C, Gottesman D, Smith A. Secure multi-party quantum computation [C]. Symposium on the Theory of Computing, Montreal QC Canada: ACM, 2002: 643-652. [7] Unruh D. Universally composable quantum multi-party computation [C]. Annual International Conference on the Theory and Applica-tion of Cryptographic Techniques, French Riviera: AIC, 2002: 486-505.[8] Ben M, Crépeau C, Gottesman D, Hassidim A, Smith A. Secure Multiparty Quantum Computation with (Only) a Strict Honest Major-ity [C]. Symposium on Foundations of Computer Science, Berkeley California USA: IEEE, 2006: 249-260. [9] Heinrich S. Quantum summation with an application to integration [J]. Journal of Complexity, 2002, 18(1): 1–50.[10] 杜建忠, 陈秀波, 温巧燕, 朱甫臣. 保密多方量子求和 [J]. 物理学报, 2007, 56(11): 6214-6219.[11] Chen X B, Xu G, Yang Y, Wen Q Y. An Efficient Protocol for the Secure Multi-party Quantum Summation [J]. International Journal of Theoretical Physics, 2010, 49(11): 2793-2804.[12] Zhang C, Sun Z W, Huang Y. High-capacity quantum summation with single photons in both polarization and spatial-mode degrees of freedom [J]. International Journal of Theoretical Physics, 2014, 53(3): 933-941.[13] Gu J, Hwang T, Tsai C. Improving the Security of ‘High-Capacity Quantum Summation with Single Photons in both Polarization and Spatial-Mode Degrees of Freedom’ [J]. International Journal of Theoretical Physics, 2019, 58: 2213-2217.[14] Zhang C, Sun Z W, Huang X, et al. Three-party quantum summation without a trusted third party [J]. International Journal of Quantum Information, 2015, 13(2): 1550011.[15] Shi R H, Mu Y, Zhong H, Cui J, Zhang S. Secure multiparty quantum computation for summation and multiplication [J]. Scientific Reports, 2016, 6: 19655. [16] Liu W, Wang Y B, Fan W Q. An novel protocol for the quantum secure multiparty summation based on two-particle Bell states [J]. International Journal of Theoretical Physics, 2017, 56(9): 2783-2791.[17] Zhang C, Huang Q, Yang P. Multi-party quantum summation without a trusted third party based on single particles [J]. International Journal of Quantum Information, 2017, 15(2): 1750010.[18] Yang H Y, Ye T Y. Secure multi-party quantum summation based on quantum Fourier transform [J]. Quantum Information Processing. 2018, 17(5): 129.[19] Zhang C, Razavi M, Sun Z. et al. Improvements on “Secure multi-party quantum summation based on quantum Fourier transform” [J]. Quantum Information Process, 2019, 18: 336.[20] Ji Z X, Zhang H G, Wang H Z. Quantum protocols for secure multi-party summation [J]. Quantum Information Processing, 2019, 18(6): 168.[21] Gan Z G. Improvement of Quantum Protocols for Secure Multi-Party Summation [J]. International Journal of Theoretical Physics, 2020, 59: 3086-3092.[22] Lv S X, Jiao X F, Zhou P. Multiparty Quantum Computation for Summation and Multiplication with Mutually Unbiased Bases [J]. International Journal of Theoretical Physics, 2019, 58(9): 1-11.[23] Duan M Y. Multi-Party Quantum Summation within a d-Level Quantum System [J]. International Journal of Theoretical Physics, 2020, 59: 1638–1643.[24] 叶天语, 胡家莉. 基于d级量子系统相互无偏基的量子安全多方求和及其应用 [J]. 中国科学:物理学 力学 天文学, 2021, 51(02): 88-95.[25] Boyer M, Kenigsberg D, Tal M. Quantum Key Distribution with Classical Bob [J]. Physical Review Letters, 2007, 99(14): 140501. |