[1] Morin F J. Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature [J]. Physical Review Letters, 1959, 3(1): 34-36. [2] Lappalainen J, Heinilehto S, Jantunen H, et al. Electrical and optical properties of metal-insulator-transition VO2 thin films [J]. Journal of Electroceramics, 2009, 22: 73-77. [3] Lysenko S, Rua A J, Vikhnin V, et al. Light-induced ultrafast phase transitions in VO2 thin film [J]. Applied Surface Science, 2006, 252(15): 5512-5515. [4] Wu B, Zimmers A, Aubin H, et al. Electric-field-driven phase transition in vanadium dioxide [J]. Physical Review B, 2011, 84(24): 241410. [5] Leroy J, Crunteanu A, Bessaudou A, et al. High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes [J]. Applied Physics Letters, 2012, 100: 213507. [6] Boriskov P, Velichko A, Pergament A, et al. The effect of electric field on metal-insulator phase transition in vanadium dioxide [J]. Technical Physics Letters, 2002, 28: 406-408. [7] Liu M, Hwang H Y, Tao H, et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial [J]. Nature, 2012, 487(7407): 345-348. [8] Muraoka Y, Yamauchi T, Ueda Y, et al. Efficient photocarrier injection in a transition metal oxide heterostructure [J]. Journal of Physics: Condensed Matter, 2002, 14: L757. [9] Ruzmetov D, Senanayake S, Narayanamurti V, et al. Correlation between metal-insulator transition characteristics and electronic structure changes in vanadium oxide thin films [J]. Physical Review B, 2008, 77: 195442. [10] Ruzmetov D, Zawilski K, Narayanamurti V, et al. Structure-functional property relationships in RF-sputtered vanadium dioxide thin films [J]. Journal of Applied Physics, 2007, 102: 113715-113717. [11] Sahana M, Subbanna G, Shivashankar S. Phase transformation and semiconductor-metal transition in thin films of VO2 deposited by low-pressure metalorganic chemical vapor deposition [J]. Journal of Applied Physics, 2002, 92: 6495-6504. [12] Mani R, Ramanathan S. Observation of a uniform temperature dependence in the electrical resistance across the structural phase transition in thin film vanadium oxide (VO2) [J]. Applied Physics Letters, 2007, 91(6): 1-3. [13] Chae B, Kim H-T, Yun S. Characteristics of W- and Ti-Doped VO2 Thin Films Prepared by Sol-Gel Method [J]. Electrochemical and Solid State Letters 2008, 11(6): D53-56. [14] Muraoka Y, Hiroi Z. Metal–Insulator Transition of VO2 Thin Films Grown on TiO2 (001) and (110) Substrates [J]. Applied Physics Letters, 2002, 80: 583-585. [15] Gupta A, Aggarwal R, Dutta T, et al. Semiconductor to Metal Transition Characteristics of VO2 Thin Films Grown Epitaxially on Si (001) [J]. Applied Physics Letters, 2009, 95: 111915. [16] Wall S, Wegkamp D, Foglia L, et al. Ultrafast changes in lattice symmetry probed by coherent phonons at the onset of the photoinduced phase transition in VO2 [J]. International Conference on Ultrafast Structural Dynamics, 2012, 3: 721. [17] Lysenko S, Rúa A, Vikhnin V, et al. Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation [J]. Physical Review B, 2007, 76(3): 035104. [18] Jepsen P U, Fischer B M, Thoman A, et al. Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy [J]. Physical Review B, 2006, 74(20): 205103. [19] Kübler C, Ehrke H, Huber R, et al. Coherent Structural Dynamics and Electronic Correlations during an Ultrafast Insulator-to-Metal Phase Transition in VO2 [J]. Physical Review Letters, 2007, 99(11): 116401. [20] Nakajima M, Takubo N, Hiroi Z, et al. Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy [J]. Applied Physics Letters, 2008, 92: 011907. [21] Hada M, Okimura K, Matsuo J. Photo-induced lattice softening of excited-state VO2 [J]. Applied Physics Letters 2011, 99(051903-3): 051903. [22] Cavalleri A, Tóth C, Siders C W, et al. Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition [J]. Physical Review Letters, 2001, 87(23): 237401. [23] Gray A X, Hoffmann M C, Jeong J, et al. Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide [J]. Physical Review B, 2018, 98(4): 045104. [24] DanDan S, Zhi C, Ye W Q, et al. VO2 low temperature deposition and terahertz transmission modulation [J]. Acta Physica Sinica, 2013, 62(01): 401-406(in Chinese). 孙丹丹, 陈智, 文岐业, 等. 二氧化钒薄膜低温制备及其太赫兹调制特性研究 [J]. 物理学报, 2013, 62(01): 401-406. [25] Liu H, Wong L, Wang S, et al. Ultrafast insulator-metal phase transition in vanadium dioxide studied using optical pump-terahertz probe spectroscopy [J]. Journal of physics Condensed matter : an Institute of Physics journal, 2012, 24: 415604. [26] Lee K W, Kweon J, Lee C, et al. Infrared-wave number-dependent metal–insulator transition in vanadium dioxide nanoparticles [J]. Applied Physics Letters, 2010, 96: 243111-243113. [27] Baum P, Yang D-S, Zewail A. 4D Visualization of Transitional Structures in Phase Transformations by Electron Diffraction [J]. Science, 2007, 318: 788-792. [28] Cocker T, Titova L, Fourmaux S, et al. Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide [J]. Physical Review B, 2012, 85: 155120-155111. [29] Xue X, Jiang M, Li G, et al. Photoinduced insulator-metal phase transition and the metallic phase propagation in VO2 films investigated by time-resolved terahertz spectroscopy [J]. Journal of Applied Physics, 2013, 114: 193506. [30] Tonouchi M. Cutting-edge terahertz technology [J]. Nature Photonics, 2007, 1(2): 97-105. [31] Withayachumnankul W, Abbott D. Metamaterials in the Terahertz Regime [J]. Photonics Journal, IEEE, 2009, 1: 99-118. [32] Ming-Hai L, Ma-Ji X, Qi-Wei H. Research progress of metal-insulator phase transition mechanism in VO2 [J]. Acta Physica Sinica, 2016, 65(04): 5-12(in Chinese). 罗明海, 徐马记, 黄其伟, 等. VO2金属-绝缘体相变机理的研究进展 [J]. 物理学报, 2016, 65(04): 5-12. [33] Wentzcovitch R M, Schulz W W, Allen P B. VO2: Peierls or Mott-Hubbard? A view from band theory [J]. Physical Review Letters, 1994, 72(21): 3389-3392. [34] Rice T, Pouget J-P. Comment on "VO2: Peierls or Mott-Hubbard? A View from Band Theory" [J]. Physical Review Letters 1994, 73: 3042. [35] Goodenough J B. The two components of the crystallographic transition in VO2 [J]. Journal of Solid State Chemistry, 1971, 3(4): 490-500. [36] Nakajima M, Takubo N, Hiroi Z, et al. Study of photo-induced phenomena in VO2 by terahertz pump-probe spectroscopy [J]. Journal of Luminescence, 2009, 129(12): 1802-1805. [37] Zylbersztejn A, Mott N F. Metal-insulator transition in vanadium dioxide [J]. Physical Review B, 1975, 11(11): 4383-4395. [38] Paquet D, Leroux-Hugon P. Electron correlations and electron-lattice interactions in the metal-insulator, ferroelastic transition in VO2: A thermodynamical study [J]. Physical Review B, 1980, 22(11): 5284-5301. [39] Kim H-T, Lee Y, Kim B-J, et al. Monoclinic and Correlated Metal Phase in VO2 as Evidence of the Mott Transition: Coherent Phonon Analysis [J]. Physical Review Letters, 2007, 97: 266401. [40] Cavalleri A, Rini M, Chong H H W, et al. Band-Selective Measurements of Electron Dynamics in VO2 Using Femtosecond Near-Edge X-Ray Absorption [J]. Physical Review Letters, 2005, 95(6): 067405. [41] Koethe T C, Hu Z, Haverkort M W, et al. Transfer of Spectral Weight and Symmetry across the Metal-Insulator Transition in VO2 [J]. Physical Review Letters, 2006, 97(11): 116402. [42] Biermann S, Poteryaev A, Lichtenstein A I, et al. Dynamical Singlets and Correlation-Assisted Peierls Transition in VO2 [J]. Physical Review Letters, 2005, 94(2): 026404. [43] Roach W R, Balberg I. Optical induction and detection of fast phase transition in VO2 [J]. Solid State Communications, 1971, 9(9): 551-555. [44] Karakurt I, Boneberg J, Leiderer P, et al. Transmission increase upon switching of VO2 thin films on microstructured surfaces [J]. Applied Physics Letters, 2007, 91: 091907. [45] Becker M, Buckman A, Walser R, et al. Femtosecond Laser Excitation of the Semiconductor-Metal Phase Transition in VO2 [J]. Applied Physics Letters, 1994, 79(5): 2404-2408. [46] Cavalleri A, Dekorsy T, Chong H, et al. Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale [J]. Physical Review B 2004, 70: 161102-161104. [47] Morrison V R, Chatelain R P, Tiwari K L, et al. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction [J]. Science, 2014, 346 (6208): 445-448. [48] ChangLei W, Zhen T, QiRong X, et al. Photo-induced insulator-metal transition of silicon-based VO2 nanofilm by THz time domain spectroscopy [J]. Acta Physica Sinica, 2010, 59(11): 7857(in Chinese). 王昌雷, 田震, 邢岐荣, 等. 硅基VO2纳米薄膜光致绝缘体—金属相变的THz时域频谱研究 [J]. 物理学报, 2010, 59(11): 7857. [49] Cocker T, Titova L, Fourmaux S, et al. Terahertz conductivity of the metal-insulator transition in a nanogranular VO2 film [J]. Applied Physics Letters, 2010, 97: 221905. [50] Pashkin A, Kübler C, Ehrke H, et al. Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy [J]. Physical Review B, 2011, 83(19): 195120. [51] Changlei W, Shuai W, Feng L Y, et al. Research on THz Time Domain Spectrum of Photo-Induced Insulator-Metal Phase Transition of VO2 Films [J]. Spetroscopy and Spectral Analysis, 2015, 35(11): 3046-3049(in Chinese). 王昌雷, 武帅, 栗岩锋, 等. 二氧化钒薄膜光致绝缘体-金属相变的太赫兹时域光谱研究 [J]. 光谱学与光谱分析, 2015, 35(11): 3046-3049. [52] Pei-Di Y, Chen O, WeiHao H T-S Z, et al. Study of phase transition of single crystal and polycrystalline vanadium dioxide nanofilms by using continuous laser pump-terahertz probe technique [J]. Acta Phys Sin, 2020, 69(20): 88-95(in Chinese). 杨培棣, 欧阳琛, 洪天舒, 等. 利用连续激光抽运-太赫兹探测技术研究单晶和多晶二氧化钒纳米薄膜的相变 [J]. 物理学报, 2020, 69(20): 88-95. [53] Feng Haoqian. Research On Preparation and Phase Transition Properties in the Terahertz Band of Vanadium Oxide Thin Films [D]: Master Dissertation of University of Electronic Science and Technology of China, 2017(in Chinese). 冯豪倩. 氧化钒薄膜的制备及其太赫兹波段相变性能的研究 [D]. 成都: 电子科技大学硕士论文, 2017. [54] Wen Q-Y, Zhang H-W, Yang Q-H, et al. Terahertz metamaterials with VO2 cut-wires for thermal tunability [J]. Applied Physics Letters, 2010, 97: 021111. [55] Zhi-Qiang L, Xiao-Lei C S-J W, Fei F, et al. Thermally controlled terahertz metamaterial modulator based on phase transition of VO2 thin film [J]. Acta Physica Sinica, 2013, 62(13): 130702(in Chinese). 刘志强, 常胜江, 王晓雷, 等. 基于VO2薄膜相变原理的温控太赫兹超材料调制器 [J]. 物理学报, 2013, 62(13): 130702. [56] Hu F, Wang H, Zhang X, et al. Electrically Triggered Tunable Terahertz Band-Pass Filter Based on VO2 Hybrid Metamaterial [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(3): 1-7. [57] Zhao S, Hu F, Xu X, et al. Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4–VO2–Si3N4 sandwich* [J]. Chinese Physics B, 2019, 28(5): 054203. [58] Seo M, Kyoung J, Park H, et al. Active Terahertz Nanoantennas Based on VO2 Phase Transition [J]. Nano letters, 2010, 10: 2064-2068. [59] Xiong Ying. The Research on Silica Based Vanadium Dioxide thin films and its applications of terahertz Switch [D]. Chengdu: Master Dissertation of University of Electronic Science and Technology of China, 2015(in Chinese). 熊瑛. 硅基二氧化钒薄膜制备及在太赫兹开关器件方面的应用 [D]. 成都: 电子科技大学硕士论文, 2015. [60] Coppinger M, Sustersic N, Kolodzey J, et al. Sensitivity of a vanadium oxide uncooled microbolometer array for terahertz imaging [J]. Optical Engineering, 2011, 50(5): 053206-053205. [61] Song Z, Wang K, Li J, et al. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials [J]. Optics Express, 2018, 26(6): 7148-7154. [62] Chen S C, Yuan H K, Zhai Z H, et al. All optically driven memory device for terahertz waves [J]. Optics letters, 2020, 45(1): 236-239.
|