量子电子学报 ›› 2023, Vol. 40 ›› Issue (3): 383-391.doi: 10.3969/j.issn.1007-5461.2023.03.010

• 光谱 • 上一篇    下一篇

基于 IRIV-SA 的乙烯 FTIR 光谱波数优选

张梦思 1, 鞠 薇 2*, 程志友 2, 任慧东 1   

  1. ( 1 安徽大学电子信息工程学院, 安徽 合肥 230601; 2 安徽大学互联网学院, 安徽 合肥 230039 )
  • 收稿日期:2022-04-16 修回日期:2022-05-11 出版日期:2023-05-28 发布日期:2023-05-28
  • 通讯作者: E-mail: 20029@ahu.edu.cn E-mail:E-mail: 20029@ahu.edu.cn
  • 作者简介:张梦思 ( 1995 - ) , 女, 研究生, 主要从事近红外光谱定性和定量分析方面的研究。E-mail: p20201060@stu.ahu.edu.cn
  • 基金资助:
    国家自然科学基金 (61672032) , 安徽省教育厅自然科学基金 (KJ2021A0026)

FTIR spectral wavenumber optimization for ethylene based on IRIV-SA

ZHANG Mengsi 1 , JU Wei 2* , CHENG Zhiyou2 , REN Huidong1   

  1. ( 1 School of Electronic and Information Engineering, Anhui University, Hefei 230601, China; 2 School of Internet, Anhui University, Hefei 230039, China )
  • Received:2022-04-16 Revised:2022-05-11 Published:2023-05-28 Online:2023-05-28

摘要: 利用傅里叶变换红外光谱 (FTIR) 技术能够对有机物的成分及含量进行快速无损测量。作为重要的有机化 工原料, 乙烯在塑料、醇类和纤维等大宗化学品的制造中有着广泛的应用, 但同时由于其易挥发性, 乙烯对环境和人 体有着潜在的危害。为提高FTIR技术检测乙烯浓度模型的精度, 综合迭代保留信息变量法 (IRIV) 和模拟退火算法 (SA) 的优点, 提出了改进的IRIV-SA红外光谱波数优选算法。该方法在IRIV算法稳定选取大量光谱特征波数的基 础上, 利用SA进一步筛选少量有效特征波数, 从而降低模型复杂度, 提高有机物光谱检测精度。实验首先利用IRIVSA对乙烯红外光谱的浓度进行波数选取, 最终获取的特征波数由全光谱的271个变量降低至 5 个变量, 再利用特征 波数进行建模, 结果表明其验证集相关系数、均方根误差为0.9989和0.3943, 预测集相关系数、均方根误差为0.9978 和0.6652, 较全光谱建模精度有大幅提高。为进一步验证该算法的有效性, 同时建立IRIV、SA、CARS (自适应重加权 采样算法)、SPA (连续投影算法) 以及IRIV-CARS、IRIV-SPA波数选取模型对相同数据集进行对比实验, 比对结果表 明IRIV-SA算法优于上述 6 种波数选取方法, 是一种更有效的特征波数优选方法。

关键词: 傅里叶变换红外光谱, 乙烯, 波数优选, 迭代保留信息变量, 模拟退火算法

Abstract: Fourier transform infrared spectroscopy (FTIR) can rapidly and nondestructively measure the composition and content of organic matter. As an important organic chemical raw material, ethylene is widely used in the manufacturing of bulk chemicals such as plastics, alcohols and fibers. However, due to its volatility, ethylene is harmful to the environment and human body. To improve the accuracy of FTIR in the detection model of ethylene concentration, an improved IRIV-SA infrared spectral wavenumber optimization algorithm is proposed based on the advantages of iteratively retains informative variables method (IRIV) and simulated annealing algorithm(SA). On the basis of stable selection of a large number of spectral characteristic wavenumbers by IRIV algorithm, this method uses SA to further screen a small number of effective characteristic wavenumbers, so as to reduce the complexity of the model and improve the detection accuracy of organic matter spectrum. In the experiment, IRIV-SA is used to select the wavenumber of the concentration of ethylene infrared spectrum at first, and the number of characteristic wavenumbers obtained is reduced from 271 to 5, then the characteristic wavenumber is used for modeling. The results show that the correlation coefficient and root mean square error of validation set are 0.9989 and 0.3943, and the correlation coefficient and root mean square error of prediction set are 0.9978 and 0.6652, which indicates that the modeling accuracy of the proposed algorithm is significantly improved compared with that of the whole spectrum modeling. To further verify the effectiveness of the improved algorithm, IRIV, SA, CARS (competitive adaptive reweighted sampling algorithm), SPA (successive projections algorithm), IRIV-CARS and IRIV-SPA wavenumber selection models are established for comparative experiments on the same data set. The comparison results show that IRIV-SA algorithm is superior to the above six wavenumber selection methods, and is an effective feature wavenumber selection method.

Key words: Fourier transform infrared spectroscopy, ethylene, wavenumber selection, iteratively retains informative variables, simulated annealing algorithm

中图分类号: