[1] L. Peter, M. Sahand, S. S?ren, P. Schneeweiss, J. Volz, A. Rauschenbeute, H. Pichler and P. Zoller, Chiral quantum optics, Nature, 541, 473 (2017).[2] H. Yang, G. Q. Qin, H. Zhang, X. Mao, M. Wang and G. L. Long, Multimode interference induced optical nonreciprocity and routing in an optical microcavity, annalen der physik 533, 2000506 (2021).[3] Y. Y. Zhu, Y. S. Zhao and L. Zhu, Modal discrimination in parity-time symmetric single microring lasers, IEEE Photonics Jour. 9, 2767382 (2017).[4] K. Y. Xia, G. W. Lu, G. W. Lin, Y. P Cheng, Y. P. Niu, S. Q. Gong and J. Twamley, Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling, Phys. Rev. A 90, 043802 (2014).[5] C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz and A. Rauschenbeutel, Nanophotonic optical isolator controlled by the internal state of cold atoms, Phys. Rev. X 5, 041036 (2015).[6] M. Scheucher, A. Hilico, E. Will, J. Volz and A. Rauschenbeutel, Quantum optical circulator controlled by a single chirally coupled atom, Science 354, 1577 (2016).[7] L. Yang, Y. Zhang, X.-B. Yan, Y. S. C. L. Cui and J. H. Wu, Dynamically induced two-color nonreciprocity in a tripod system of moving atomic lattice, Phys. Rev. A 92, 053859 (2015).[8] D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers and S. Y. Zhu, Optical diode made from a moving photonic crystal, Phys. Rev. Lett. 110, 093901 (2013).[9] J. H. Wu, M. Artoni and G. C. La Rocca, Parity-time-antisymmetric atomic lattices without gain, Phys. Rev. A 91, 033811 (2015).[10] Y. L. Chaung, A. Shamsi, M. Abbas, And Ziauddin, Coherent control of nonreciprocal reflections with spatial modulation coupling in parity-time symmetric atomic lattice, Opt. Express 20, 1701 (2020).[11] X. W. Xu, Y. Li, A. X. Chen and Y. X. Liu, Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems, Phys. Rev. A 93, 023827 (2016).[12] K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk and O. Painter, Generalized nonreciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering, Nat. Phys. 13, 465 (2017).[13] Y. Li, Y. Y. Huang, X. Z. Zhang and L. Tian, Optical directional amplification in a three-mode optomechanical system, Opt. Express 25, 18907 (2017).[14] C. Jiang, L. N. Song and Y. Li, Directional amplifier in an optomechanical system with optical gain, Phys. Rev. A. 97, 053812 (2018).[15] F. Ruesink, M. A. Miri, A. Alù and E. Verhagen, Nonreciprocity and magnetic-free isolation based on optomechanical interactions, Nat. Commun. 7, 13662 (2016).[16] P. F. Yang, X. W. Xia, H. He, S. K. Li, X. Han, P. Zhang, G. Li, P. F. Zhang, J. P. Xu, Y. P. Yang and T. C. Zhang, Realization of nonlinear optical nonreciprocity on a few-photon level based on atoms strongly coupled to an asymmetric cavity, Phys. Rev. Lett. 123, 233604 (2019).[17] J. Wang, optical nonreciprocity in two-cavity optomechanical system, Chinese Journal of Quantum Electronics (量子电子学报), 2020, 37(3): 328-36 (in Chinese)[18] R. Huang, A. Miranowicz, J. Q. Liao, F. Nori, and H. Jing, Nonreciprocal photon blockade, Phys. Rev. Lett. 121, 153601 (2018).[19] L. Tang, J. S. Tang, M. Y. Chen, F. Nori, M. Xiao, and K. Y Xia, Quantum squeezing induced optical nonreciprocity, Phys. Rev. Lett. 128, 083604 (2022).[20] S. C. Zhang, Y. Q. Hu, G. W. Lin, Y. P. Niu, K. Y. Xia, J. B Gong and S. Q. Gong, Thermal-motion-induced non-reciprocal quantum optical system, Nat. Photon. 12, 744 (2018).[21] G. W Lin, S. C. Zhang, Y. Q Hu, Y. P. Niu, J.-B. Gong, and S. Q. Gong, Nonreciprocal amplification with four-level hot atoms, Phys. Rev. Lett. 123, 033902 (2019).[22] Y. Q. Hu, Y. H. Qi, L. You, S. C. Zhang, G. W. Lin, X. L. Li, J. B. Gong, S. Q. Gong and Y. P. Niu, Passive nonlinear optical isolators by passing dynamic reciprocity, Phys. Rev. A 16, 014046 (2021).[23] W. Jiang, Y. G. Ma, J. Yuan, G. Yin, W. H. Wu, and S. L. He, Deformable broadband metamaterial absorbers engineered with an analytical spatial Kramers-Kronig permittivity profile, Laser Photon. Rev. 11, 1600253 (2017).[24] D. J. Liu, Y. Huang, H. Hu, L. L. Liu, D. L. Gao, L. X. Ran, D. X. Ye, Y. Luo, Designing spatial Kramers–Kronig media using transformation optics, IEEE Trans. Antennas Propag. 10, 1109 (2019).[25] Y. Zhang, J. H. Wu, M. Artoni and G. C. La Rocca, Controlled unidirectional reflection in cold atoms via the spatial Kramers-Kronig relation, Opt. Express 29, 5890 (2021).[26] M. Artoni, G. La Rocca, and F. Bassani, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 72, 046604 (2005).[27] Y. Zhang, Y. Xue, G. Wang, C.-L. Cui, R. Wang, and J.-H. Wu. Steady optical spectra and light propagation dynamics in cold atomic samples with homogeneous or inhomogeneous densities, Opt. Experess 19, 2111-2019 (2011). |