[1] Loss D , DiVincenzo D P, Quantum computation with quantum dots
[J]. Phys. Rev. A, 1998, 57: 120.
[2] Imamoglu A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M, Small A, Quantum information processing using quantum dot spins and cavity QED
[J]. Phys. Rev. Lett., 1999, 83: 4204.
[3] Leuenberger M N, Fault-tolerant quantum computing with coded spins using the conditional Faraday rotation in quantum dots
[J]. Phys. Rev. B, 2006, 73: 075312.
[4] Zhao N, Zhong L, Zhu J L, Sun C P, Spin entanglement induced by spin-orbit interactions in coupled quantum dots
[J]. Phys. Rev. B, 2006, 74: 075307.
[5] Emary C , Sham L J, Optically controlled logic gates for two spin qubits in vertically coupled quantum dots
[J]. Phys. Rev. B, 2007, 75: 125317.
[6] Boyle S J, Ramsay A J, Bello F, Liu H Y, Hopkinson M, Fox A M , Skolnick M S, Two-qubit conditional quantum-logic operation in a single self-assembled quantum dot
[J]. Phys. Rev. B, 2008, 78: 075301.
[7] Bertoni A, Bordone P, Brunetti R, Jacoboni C , Reggiani S, Quantum logic gates based on coherent electron transport in quantum wires
[J]. Phys. Rev. Lett., 1999, 84: 5912-5915.
[8] Zhu S L, Wang Z D. Unconventional Geometric Quantum Computation.
[J]. Phys. Rev. Lett, 2003, 91: 187902。
[9] Sorensen A S, Molmer K, Entangling atoms in bad cavities
[J]. Phys. Rev. A, 2002, 66: 022314.
[10] Sorensen A S, Molmer K, Entanglement and quantum computation with ions in thermal motion
[J]. Phys. Rev. A, 2000, 62: 022311.
[11] Feng X L, Wang Z, Wu C, Kwek L C , Lai C H, Oh C H, Scheme for unconventional geometric quantum computation in cavity QED
[J]. Phys. Rev. A, 2007, 75: 052312.
[12] Clark S G, Parkins A S, Entanglement and entropy engineering of atomic two-qubit states
[J]. Phys. Rev. Lett., 2003, 90: 047905.
[13] Leibfried D, DeMarco B, Meyer V, Lucas D, Barrett M, Britton J, Itano W M, Jelenkovic B, Langer C, Rosenband T,and Wineland D J, Nature , 422, 412, 2003。
[14] Wang Xand Zanardi P, Simulation of many-body interactions by conditional geometric phases
[J],Phys. Rev. A, 2002, 65: 032327.
[15] Zheng S B, Unconventional geometric quantum phase gates with a cavity QED system
[J], Phys. Rev. A, 2004,70: 052320。
[16] Chen C Y, Feng M, Zhang X L, and Gao K L, Strong-driving-assisted unconventional geometric logic gate in cavity QED
[J], Phys. Rev.A 2006, 73: 032344.
[17] Chen C Y, Zhang X L, Deng Z J, Gao K L, and Feng M, Influence from cavity decay on geometric quantum computation in the large-detuning cavity QED model
[J], Phys. Rev. A. 2006, 74, 032328.
[18] Lloyd S, Almost Any Quantum Logic Gate is Universal
[J],Phys. Rev. Lett.1995,75, 346 .
[19] Kuratsuji H, Geometric Canonical Phase Factors and Path Integrals.
[J] Phys. Rev. Lett. 1988, 61, 1687。
[20] Hillery M and Zubairy M S, Path-integral approach to problems in quantum optics
[J], Phys. Rev. A ,1982,26: 451.
[21] Aharonov Y and Anandan J, Phase change during a cyclic quantum evolution
[J], Phys. Rev. Lett. 1987, 58: 1593.
[22] Taylor J M, Lukin M D, Cavity quantum electrodynamics with semiconductor double-dot molecules on a chip
[J].cond-mat/0605144.
[23] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf, Coupling superconducting qubits via a cavity bus
[J]. Nature (London), 2007, 449: 443.
[24] Childress L, Sørensen A S, Lukin M D, Mesoscopic cavity quantum electrodynamics with quantum dots
[J]. Phys. Rev. A, 2004, 69: 042302.
[25] Brun T A, Wang H, Coupling nanocrystals to a high-Q silica microsphere: Entanglement in quantum dots via photon exchange
[J]. Phys. Rev. A, 2000, 61: 032307.
[26] Ryu H Y, Notomi M, Lee Y H, High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities
[J], Appl. Phys. Lett., 2003, 83: 4294.
|