[1] Bennett C, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. [J]. Phys. Rev. Lett., 1993, 70: 1895.
[2] Hillery M, Buzcaronek V, iacute, et al. Quantum secret sharing. [J]. Phys. Rev. A, 1999, 59: 1829.
[3] Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. [J]. Phys. Rev. A, 1999, 59: 162.
[4] Cleve R, Gottesman D, Lo H K. How to share a quantum secret. [J]. Phys. Rev. Lett., 1999, 83: 648.
[5] Wiesner S. Conjugate coding. [J]. ACM Sigact News, 1983, 15: 78-88.
[6] Zhao Z, Chen Y A, Zhang A N, et al. Experimental demonstration of five-photon entanglement and open-destination teleportation. [J]. Nature, 2004, 430: 54-58.
[7] Deng F G, Li X H, Li C Y, et al. Multiparty quantum secret splitting and quantum state sharing. [J]. Phys. Lett. A, 2006, 354: 190-195.
[8] Gao F, Guo F Z, Wen Q Y, et al. On the information-splitting essence of two types of quantum key distribution protocols. [J]. Phys. Lett. A, 2006, 355: 172-175.
[9] Zheng S B. Splitting quantum information via W states. [J]. Phys. Rev. A, 2006, 74: 054303.
[10] Pan G X, Liu Y M, Zuo X Q, et al. Quantum information splitting of two-qubit state with minimal classical communication and measurement complexity. [J]. Int. J. Quantum Inf., 2008, 6: 1101.
[11] Zhang Z J, Cheung C Y. Minimal classical communication and measurement complexity for quantum information splitting. [J]. J. Phys. B-at Mol. Opt., 2008, 41.
[12] Zuo X Q, Liu Y M, Zhang W, et al. Minimal classical communication cost and measurement complexity in splitting two-qubit quantum information via asymmetric W states. [J]. Int. J. Quantum Inf., 2008, 6: 1245.
[13] Panigrahi P K, Karumanchi S, Muralidharan S. Minimal classical communication and measurement complexity for quantum information splitting of a two-qubit state. [J]. Pramana J. Phys., 2009, 73: 499.
[14] Yang Y G, Wen Q Y. Threshold multiparty quantum-information splitting via quantum channel encryption. [J]. Int. J. Quantum Inf., 2009, 7: 1249.
[15] Zhang Q Y, Zhan Y B, Zhang L L, et al. Schemes for splitting quantum information via tripartite entangled states. [J]. Int. J. Theor. Phys., 2009, 48: 3331.
[16] Liu Y M, Li M L, Gao H M, et al. A note on "Splitting four ensembles of two-qubit quantum information via three Einstein-Podolsky-Rosen pairs". [J]. Int. J. Quantum Inf., 2010, 8: 529.
[17] Wang X W, Xia L X, Wang Z Y, et al. Hierarchical quantum-information splitting. [J]. Opt. Commun., 2010, 283: 1196.
[18] Zhang W, Liu Y M, Zhang Z J, et al. Splitting a qudit state via Greenberger–Horne–Zeilinger states of qubits. [J]. Opt. Commun., 2010, 283: 628-632.
[19] Li Y H, Liu J C, Nie Y Y. Quantum teleportation and quantum information splitting by using a genuinely en- tangled six-qubit state. [J]. Int. J. Theor. Phys., 2010, 49: 2592.
[20] Wang X W, Zhang D Y, Tang S Q, et al. Hierarchical quantum information splitting with six-photon cluster states. [J]. Int. J. Theor. Phys., 2010, 49: 2691-2697.
[21] Pan G X. Quantum information splitting of arbitrary two-particle state using two GHZ states. [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2010, 27(5): 573-579 (in Chinese).
[22] Pan G X. Minimal measurement complexity for quantum information splitting of two-qubit state. [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2010, 27(2): 180-186 (in Chinese). [23] Greenberger D M, Horne M A, Shimony A, et al. Bell's theorem without inequalities. [J]. Am. J. Phys., 1990, 58: 1131. |