[1] Pei Y L, He J Q, Li J F, et al, High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO, NPG Asia Materials, 2013 (5): e47
[2] Li H, Tang X F, Zhang Q J, et al, High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase[J], Appl. Phys. Lett. 2009, 94:102114
[3] Zhou M, Li J F, Kita T, Nanostructured AgPbmSbTem+2 System Bulk Materials with Enhanced Thermoelectric Performance[J], J. Am. Chem. Soc., 2008, 130: 4527
[4] Liu J, Wang C L, Su W B, et. al, Enhancement of thermoelectric efficiency in oxygen-deficient Sr1?xLaxTiO3 ceramics[J], Appl. Phys. Lett. 2009, 95:102110
[5] Pei Y, Wang H, Snyder G J, Band Engineering of Thermoelectric Materials [J], Adv. Mater., 2012 (24): 6125
[6] Zhang F P, Lu Q M, Zhang X, et. al, Electrical transport properties of CaMnO3 thermoelectric compound: a theoretical study[J], J. Phys. Chem. Solids, 2013, 174: 859
[7] Deng S K, Tang X F, Li P, et. al, High temperature thermoelectric transport properties of p-type Ba8Ga16AlxGe30?x type-I clathrates with high performance[J], J. Appl. Phys., 2008, 103: 073503
[8] Fergus J F. Oxide materials for high temperature thermoelectric energy conversion [J].J. Euro. Ceram. Soc., 2012, 32: 525
[9] Zhang F P, Zhang X, Lu Q M, et. al, Preparation and high temperature thermoelectric properties of Ca3-xAgxCo4O9+δ oxides[J], Solid state ionics, 2011, 201: 1;
[10] Liu X, Wang J, Jia J, et. al, Synthesis and thermoelectric performance of Li-doped NiO ceramics[J], Ceram. Inter., 2012, 38: 5023
[11] Shin W, Murayama N, High performance p-type thermoelectric oxide based on NiO[J], Mater. Lett., 2000, 45: 302
[12] Liu S, Jia J, Wang J, et. al, Synthesis and Properties of NiO based Thermoelectric Oxide[J], J. Mater. Sci. Eng., 2012, 30: 518
[13] Payne M C, Teter M P, Allan D C, et al. ITERATIVE MINIMIZATION TECHNIQUES FOR ABINITIO TOTAL-ENERGY CALCULATIONS - MOLECULAR-DYNAMICS AND CONJUGATE GRADIENTS [J].Rev. Modern Phys., 1992, 64: 1045.
[14] Zhang F P, Zhang X, Lu Q M, et. al, Electronic structure and thermal properties of doped CaMnO3 system[J], J. alloys Compd., 2011, 509: 4171
[15] Peng H, Wang C, Li J, et al. Electronic and Lattice Vibrational Properties of BaSi2 from Density Functional Theory Calculations [J].J. Electron. Mater., 2011, 40: 620.
[16] Li J C, Wang C L, Wang M X, et al. Vibrational and thermal properties of small diameter silicon nanowires [J]. J. Appl. Phys. 2009, 105: 043503
[17] Zhang F P, Zeng H, Lu Q M, et al. Electronic structure and thermal properties of ZnO oxide [J]. Journal of Functional Materials and Devices, 2013, 19 (2): 63 (in Chinese) [张飞鹏,曾宏,路清梅,等. ZnO氧化物的电子结构与热学性能的研究 [J],功能材料与器件学报,2013, 19 (2): 63]
[18] Xie Y, Luo Y, Liu S J. The effects of the uniaxial pressure on electronic structure of the (6,6) single-walled carbon nanotube crystal [J]. Acta Physica Sinica, 2008, 57 (7): 4364 (in Chinese) [ 解研,罗莹,刘绍军. 单向压力对碳纳管(6,6)晶体电子结构的影响[J],物理学报,2008, 57 (7): 4364]
[19] Jiao Z Y, Yang J F, Zhang X Z, et al. Theoretical investigation of elastic, electronic and optical properties of zinc-blende structure GaN under high pressure [J]. Acta Physica Sinica, 2011, 60 (11): 117103 (in Chinese) [ 焦照勇,杨继飞,张现周,等. 闪锌矿GaN弹性性质、电子结构和光学性质外压压力效应的理论研究[J],物理学报,2011, 60 (11): 117103]
[20] Li C X, Dang S H, Zhang K Y, et al. Influence of pressure effect on CdS electronic structure and optical properties [J]. Acta Optica Sinica, 2011, 31 (6): 0616004 (in Chinese) [ 李春霞,党随虎,张可言,等. 压力对CdS电子结构和光学性质的影响[J],光学学报,2011, 31 (6): 0616004]
[21] Zhang W H, Zhang F C, Zhang Z Y, et al. The first principle study of electronic structure properties of ZnS [J]. Materials Reviews, 2006, 20 (9): 128 (in Chinese) [张威虎,张富春,张志勇,等. 压力下纤锌矿ZnS电子结构的第一性原理研究[J],材料导报,2006, 20 (9): 128] |