J4 ›› 2017, Vol. 34 ›› Issue (3): 349-356.
• Quantum Optics • Previous Articles Next Articles
Received:
2016-01-19
Revised:
2016-05-11
Published:
2017-05-28
Online:
2017-05-22
CLC Number:
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Longhi S. Backward lasing yields a perfect absorber [J]. Physics, 2010, 3:61.[2] Stone A D. Gobbling up light with an antilaser [J]. Phys. Today, 2011, 64(11): 68[3] Chong Y D, Ge L, Cao H, et al. Coherent perfect absorbers: time-reversed lasers [J]. Phys. Rev. Lett. 2010, 105(5):1-2.[4] Wan W, Chong Y, Ge L, et al. Time-reversed lasing and interferometric control of absorption [J]. Science, 2011, 331(6019): 889-892.[5] Gmachl C F. Laser science: Suckers for light [J]. Nature, 2010, 467(7311): 37-39.[6] Noh H, Chong Y, Stone A D, et al. Perfect coupling of light to surface plasmons by coherent absorption [J]. Phys. Rev. Lett. 2012, 108(18): 1222-1228[7] Yoon J W, Park W J, Lee K J, et al. Surface-plasmon mediated total absorption of light into silicon [J]. Opt. Express, 2011, 19(21): 20673-20680.[8] Ghenuche P, Vincent G, Laroche M, et al. Optical extinction in a single layer of nanorods [J]. Phys. Rev. Lett. 2012, 109(14): 2920-2921.[9] Shourya D G, Martin O J F, Dutta G S, et al. Controllable coherent perfect absorption in a composite film [J]. Opt. Express, 2012, 20(2): 1330-1336.[10] Yoon J W, Koh G M, Song S H, et al. Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thinfilm grating [J]. Phys. Rev. Lett. 2012, 109(25): 4657-4675.[11] Klimov V, Sun S, Guo G. Coherent perfect nanoabsorbers based on negative refraction [J]. Opt. Express, 2012, 20(12): 13071.[12] Pu M, Feng Q, Hu C, et al. Perfect Absorption of Light by Coherently Induced Plasmon Hybridization in Ultrathin Metamaterial Film [J]. Plasmonics, 2012, 7(4): 733-738.[13] Longhi S. Time-reversed optical parametric oscillation [J]. Phys. Rev. Lett. 2011, 107(3): 373-377[14] Chong Y D, Ge L, Stone A D. PT-symmetry breaking and laser-absorber modes in optical scattering systems [J]. Phys. Rev. Lett. 2010, 106(9): 503-508.[15] Aspelmeyer T J, Kippenberg M, Marquardt F. Cavity Optomechanics [J]. Rev. Mod. Phys. 2013, 86(4): 1391-1452.[16] Chen H J, Mi X W. Normal mode splitting and cooling induced by radiation pressure in strong coupling optomechanical cavity [J]. Chinese Journal of Quantum Electronics, 2012, 29(2):153-164.[17] Sankey J C, Yang C, Zwickl B M, et al. Strong and Tunable Nonlinear Optomechanical Coupling in a Low-Loss System [J]. Nat. Phys. 2010, 6(9): 707-712.[18] Agarwal G S, Huang S. Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes [J]. New Journal of Physics, 2014, 16(3): 1040-1047.[19] Weis S, Rivi`ere R, Del′eglise S, et al. Optomechanically Induced Transparency [J]. Science, 2010, 330(6010): 1520-1523.[20] Safavi-Naeini A H, Alegre T P M, Chan J, et al. Electromagnetically induced transparency and slow light with optomechanics [J]. Nature, 2011, 472(7341): 69-73.[21] Chen B, Jiang C, K. D. Zhu K D. Slow light in a cavity optomechanical system with a Bose-Einstein condensate [J]. Phys Rev. A, 2011, 83(5): 2316-2321.[22] Hocke F, Zhou X Q, Schliesser A, et al. Electromechanically induced absorption in a circuit nano-electromechanical system [J]. New J. Phys.2012, 14(24): 123037-123051.[23] Qu K, Agarwal G S. Fano resonances and their control in optomechanics [J]. Phys. Rev. A, 2013, 87(6): 4996-4996.[24] Brennecke F, Ritter S, Donner T, et al. Cavity optomechanics with a Bose-Einstein condensate [J]. Science, 2008, 322(5899): 235-238.[25] Colombe Y, Steinmetz T, Dubois G, et al. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip [J]. Nature, 2007, 450(7167): 272-276.[26] Nagy D, K′onya G, Szirmai G, et al. The Dicke model phase transition in the quantum motion of a Bose-Einstein condensate in an optical cavity [J]. Phys. Rev. Lett. 2009, 104(13): 1041-1093.[27] Paternostro M, Chiara G D, Palma G M. Cold-Atom-Induced Control of an Optomechanical Device [J]. Phys. Rev. Lett. 2010, 104(24): 2583-2587.[28] Murch K W, Moore K L, Gupta S, et al. Observation of quantum-measurement backaction with an ultracold atomic gas [J]. Nat. Phys. 2008, 4(7): 561-564.[29] Boyd R W. Nonlinear Optics [M]. Academic, San Diego, CA, 1992, p.225.[30] Walls D F, Milburn G J. Quantum Optics [M]. Springer-Verlag, Berlin, 1994, Chap.7.[31] Ritter S, Brennecke F, Baumann K, et al. Dynamical coupling between a Bose–Einstein con-densate and a cavity optical lattice [J]. Appl. Phys. B, 2009, 95(2): 213-218.[32] Dobrindt J M, Wilson-Rae I, Kippenberg T J, Parametric Normal-Mode Splitting in Cavity Optomechanics [J]. Phys. Rev. Lett. 2008, 101(26): 973-980 |
[1] | BAI Hailong , BAI Jinhai , HU Dong , WANG Yu . Design and implementation of a compact microwave synthesizer for atomic interference gravimeter [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 510-518. |
[2] | LI Songsong. Effects of three-body and four-body interactions on spin squeezing and quantum entanglement in Bose-Einstein condensates [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 519-527. |
[3] | WANG Sheng , FANG Xiaoming , LIN Yu , ZHANG Tianbing , FENG Bao , YU Yang , WANG Le . Four-intensity decoy-state phase-matching quantum key distribution [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 541-545. |
[4] | JIA Wei , ZHANG Qiangqiang , BIAN Yuxiang , LI Wei . Research on the upper bound of collective attack in E91-QKD [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 407-414. |
[5] | CAO Rui , YUAN Chengzhi , SHEN Si , ZHANG Zichang , FAN Yunru , LI Jiarui , LI Hao , YOU Lixing , ZHOU Qiang , WANG Zizhu ∗. Optimized detection of maximally entangled time-bin qutrits [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 85-94. |
[6] | TANG Shibiao ∗ , LI Zhi , ZHENG Weijun , ZHANG Wansheng , GAO Song , LI Yalin , CHENG Jie , JIANG Lianjun . Research on anti-dead time attack scheme for quantum key distribution system [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 95-103. |
[7] | RUAN Zhiqiang, ZHANG Lei, ZHAO Xinyu, JIANG Xingfang ∗. Analysis of negative dispersion characteristics of a novel circular doped photonic crystal fiber [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 133-138. |
[8] | TAN Zhijie , YANG Hairui , , YU Hong , , HAN Shensheng , ∗. Progress on X-ray diffraction imaging via intensity correlation [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 851-862. |
[9] | LIN Huizu , ∗ , LIU Weitao , ∗ , SUN Shuai , , DU Longkun , , CHANG Chen , , LI Yuegang , . Progress of algorithms used in ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 863-879. |
[10] | WANG Xiaoyan, WANG Zhiyuan, CHEN Ziyang, PU Jixioing ∗. Detection of orbital angular momentum of multiple vortices from speckle via deep learning [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 955-961. |
[11] | LI Nengfei , SUN Yusong , , HUANG Jian , ∗. Research on cosine encoded multiplexing high spatial resolution ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 973-982. |
[12] | DAI Pan, PANG Zhiguang, LI Jian, WANG Qin ∗. Nonlinear Bell inequality based on entanglement sources [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 761-767. |
[13] | ZHAO Liangyuan , ∗ , CAO Lingyun , LIANG Hongyuan , WEI Zheng , WU Qianjun , QIAN Jianlin , HAN Zhengfu ∗. Research on wavelength-multiplexed quantum key distribution based on different optical fibers [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 776-785. |
[14] | ZHANG Rui , MEI Dajiang , ∗ , SHI Xiaotu , , MA Rongguo , , ZHANG Qingli , ∗ , DOU Renqin , , LIU Wenpeng , . Research progress of dislocation of YAG crystal [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 687-706. |
[15] | WANG Jingjing, LIU Yujie, ZHENG Li∗. Quantum properties of macroscopic quantum state prepared by ultra-strong coupling cavity opto-mechanical system [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 598-604. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||