[1] Auzel F. Upconversion and anti-stokes processes with f and d ions in solids [J]. Chemical Reviews, 2004, 104(1): 139-174. [2] Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chemical Society Reviews, 2009, 38(4): 976-989. [3] Nilsson J, Clarkson W A, Selvas R, et al. High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers[J]. Optical Fiber Technology, 2004, 10(1): 5-30. [4] Wintner E, Sorokin E, Sorokina I T. Recent developments in diode-pumped ultrashort pulse solide-state lasers [J]. Laser Physics, 2001, 11(11): 1193-1200. [5] Tessler N, Medvedev V, Kazes M, et al. Efficient near-infrared polymer nanocrystal light-emitting diodes [J]. Science, 2002, 295(5559): 1506-1508. [6] Zhou P, Wang X, Ma Y, et al. Review on recent progress on mid-infrared fiber lasers [J]. Laser Physics, 2012, 22(11): 1744-1751. [7] Sivakumar S, Veggel F C J M, Raudsepp M. Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3 nanoparticles [J]. Journal of the American Chemical Society, 2005, 127(36): 12464-12465. [8] Wang H Q, Batentschuk M, Osvet A, et al. Rare‐earth ion doped up‐conversion materials for photovoltaic applications[J]. Advanced Materials, 2011, 23(22‐23): 2675-2680. [9] Downing E, Hesselink L, Ralston J, et al. A three-color, solid-state, three-dimensional display[J]. Science, 1996, 273(5279): 1185-1189. [10] Li Y, Zhang J, Luo Y, et al. Color control and white light generation of upconversion luminescence by operating dopant concentrations and pump densities in Yb3+, Er3+ and Tm3+ tri-doped Lu2O3 nanocrystals[J]. Journal of Materials Chemistry, 2011, 21(9): 2895-2900. [11] Nyk M, Kumar R, Ohulchanskyy T Y, et al. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors[J]. Nano Letters, 2008, 8(11): 3834-3838. [12] Wang F, Tan W B, Zhang Y, et al. Luminescent nanomaterials for biological labelling [J]. Nanotechnology, 2006, 17(1): R1-R13. [13] Yu M, Li F, Chen Z, et al. Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors[J]. Analytical Chemistry, 2009, 81(3): 930-935. [14] Vetrone F, Naccache R, Zamarron A, et al. Temperature sensing using fluorescent nanothermometers[J]. Acs Nano, 2010, 4(6): 3254-3258. [15] Gai S, Li C, Yang P, Lin J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications[J]. Chemical Reviews, 2014, 114(4): 2343-2389. [16] Scheps R. Upconversion laser process[J]. Progress in Quantum Electronics, 1996, 20(4): 271-358. [17]Wright J C. Up-conversion and excited state energy transfer in rare-earth doped materials [M]. Radiationless Processes in Molecules and Condensed Phases. Springer Berlin Heidelberg, 1976:239-295. [18] Joubert M. Photon avalanche upconversion in rare earth laser materials[J]. Optical Materials, 1999, 11(2): 181-203. [19] Deng R, Qin F, Chen R, et al. Temporal full-colour tuning throngh non-steady-state upconversion [J]. Nature Nanotechnology, 2015, 10(3): 237-242. [20] Bettinelli M. Bright colours ahead [J]. Nature Nanotechnology, 2015, 10(3): 203-204. [21] Zhang S, Xu S, Ding J, et al. Single and two-photon fluorescence control of Er3+ ions by phase-shaped femtosecond laser pulse[J]. Applied Physics Letters, 2014, 104(1): 14101. [22] Zhang H, Yao Y, Zhang S, et al. Up-conversion luminescence polarization control in Er3+-doped NaYF4 nanocrystals [J]. Chinese Physics B, 2015, 25(2): 23201. [23] Yao Y, Zhang S, Zhang H, et al. Laser polarization and phase control of up-conversion fluorescence in rare-earth ions [J]. Scientific Reports, 2014, 4(07295): 1-5. [24] Lozovoy V V, Pastirk I, Walowicz K A, et al. Multiphoton intrapulse interference. II. Control of two-and three-photon laser induced fluorescence with shaped pulses [J]. The Journal of Chemical Physics, 2003, 118(7): 3187-3196. [25] Walowicz K A, Pastirk I, Lozovoy V V, et al. Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases [J]. The Journal of Physical Chemistry A, 2002, 106(41): 9369-9373. [26] Dudovich N, Dayan B, Faeder S M G, et al. Transform-limited pulses are not optimal for resonant multiphoton transitions [J]. Physical Review Letters, 2001, 86(1): 47-50. [27] Chuntonov L, Rybak L, Gandman A, et al. Frequency-domain coherent control of femtosecond two-photon absorption: Intermediate-field versus weak-field regime [J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41(3): 35504. [28] Chuntonov L, Rybak L, Gandman A, et al. Enhancement of intermediate-field two-photon absorption by rationally shaped femtosecond pulses [J]. Physical Review A, 2008, 77(2): 021403. [29] Chuntonov L, Rybak L, Gandman A, et al. Intermediate-field two-photon absorption enhancement by shaped femtosecond pulses: Tolerance to phase deviation from perfect antisymmetry [J]. Physical Review A, 2010, 81(4): 045401. |