[1] Hasegawa A,Kodama Y. Solitons in Optical Communications[M] (Oxford, Clarendon Press ,1995). [2] Dalfovo F, Giorgini S, Pitaevskii L P, et al. Theory of Bose-Einstein condensation in trapped gases[J]. Reviews of Modern Physics, 1999, 71:463-512. [3] Pitaevski L P, Stringari S. Bose-Einstein Condensation [M] (Oxford University Press, New York, 2003). [4] Baizakov B B, Filatrella G, Malomed B A, et al. Double parametric resonance for matter-wave solitons in a time-modulated trap[J]. PHYSICAL REVIEW E , 2005, 71:036619. [5] Liang J C, Wang H C. Application of polarization information to light-controlling-light technique[J]. Optics Letters,2017, 42: 3654-3657. [6] Liang J C. Bright solitons in azo-doped polymers through angular hole burning and their polarization-dependence-realization of a prediction[J]. Optics Letters, 2010, 35:4081-4083. [7] Lederer F, Darmanyan S, Kobyakov A. Discrete solitons, in Spatial Solitons, S. Trillo and W. Torruellas, eds. (Springer, New York, 2001), p. 269. [8] Christodoulides D N, Joseph R J. Discrete selffocusing in nonlinear arrays of coupled waveguides[J].Optics Letters 1988,13: 794-796. [9] Eisenberg H, Silberberg Y, Morandotti R, et al. Discrete spatial optical solitons in waveguide arrays[J]. Physical Review Letters, 1998, 81: 3383-3386. [10] Morandotti R, Peschel U, Aitchison J, et al. Experimental observation of linear and nonlinear optical Bloch oscillation[J], Physical Review Letters.,1999, 83: 4756–4759. [11] Pertsch T, Dannberg P, Elflein W, et al. Optical Bloch oscillations in temperature tuned waveguide arrays[J]. Physical Review Letters,1999, 83: 4752-4755. [12] Dalfovo F, Giorgini S, Pitaevskii L P, et al. Theory of Bose-Einstein condensation in trapped gases[J]. Reviews of Modern Physics. 1999, 71:463–512. [13] Xu S L, Beli? M R, Zhong W P. Three-dimensional spatio-temporal vector solitary waves in coupled nonlinear Schrödinger equations with variable coefficients[J]. Journal of the Optical Society of America B, 2013, 30: 113-122. [14] Xu S L, Petrovi? N Z, Beli? M R. Vortex solitons in the (2+1)-dimensional nonlinear Schrödinger equation with variable diffraction and nonlinearity coefficients[J]. Physica Scripta 2013, 87: 045401. [15] Xu S L, Cheng J X, Beli? M R, et al. Dynamics of nonlinear waves in two-dimensional cubic-quintic nonlinear Schrödinger equation with spatially modulated nonlinearities and potentials[J]. Optics Express , 24(9): 10066-10072. [16] Fibich G, Sivan Y, Weinstein M I. Bound states of nonlinear Schrödinger equations with a periodic nonlinear microstructure[J]. Physica D , 2006, 217: 31–57. [17] Belmonte-Beitia J, Pérez-García V M, Vekslerchik V, et al. Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities[J]. Physical Review Letters 2007,98, 064102. [18] Xu S L, Zhao G P, Beli? M R, et al. Light bullets in coupled nonlinear Schrödinger equations with variable coefficients and a trapping potential, Opt. Express,2017, 25(8): 9094-9104. |