[1] Zhang Minghui, Song Zhiping. A criterion for convergence of ghost imaging [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2016, 33(1): 8-19 (in Chinese). [2] Chan K W C, O'Sullivan M N, Boyd R W. High-order thermal ghost imaging [J]. Optics Letters, 2009, 34(21): 3343-3345. [3] Su Feng, Liu Xiang, Long Huabao, et al. Sampling number of image reconstruction arithmetic based on quantum correlated imaging [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2015, 32(2): 144-149 (in Chinese). [4] Wang L, Zou L, Zhao S. Edge detection based on subpixel-speckle-shifting ghost imaging [J]. Optics Communications, 2018, 407: 181-185. [5] Cheng J. Ghost imaging through turbulent atmosphere [J]. Optics Express, 2009, 17(10): 7916-7921. [6] Lyu M, Wang W, Wang H, et al. Deep-learning-based ghost imaging [J]. Scientific Reports, 2017, 7: 17865. [7] Zhang Na, Yao Yuan. Multi-scale compressed ghost imaging system [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2015, 32(4): 385-390 (in Chinese). [8] Klyshko D N. Two-photon light: Influence of filtration and a new possible EPR experiment [J]. Physics Letters A, 1988, 128(3-4): 133-137. [9] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement [J]. Physical Review A, 1995, 52(5): R3429-R3432. [10] Gatti A, Bache M, Magatti D, et al. Coherent imaging with pseudo-thermal incoherent light [J]. Journal of Modern Optics, 2006, 53(5-6): 739-760. [11] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector [J]. Physical Review A, 2009, 79(5): 053840. [12] Shirai T, Setälä T, Friberg A T. Temporal ghost imaging with classical non-stationary pulsed light [J]. Journal of the Optical Society of America B, 2010, 27(12): 2549-2555. [13] Ryczkowski P, Barbier M, Friberg A T, et al. Ghost imaging in the time domain [J]. Nature Photonics, 2016, 10: 167-170. [14] Devaux F, Moreau P A, Denis S, et al. Computational temporal ghost imaging [J]. Optica, 2016, 3(7): 698-701. [15] Ryczkowski P, Barbier M, Friberg A T, et al. Magnified time-domain ghost imaging [J]. APL Photonics, 2017, 2(4): 046102. [16] Kuusela T A. Temporal ghost imaging [J]. Eur. J. Phys., 2017, 38: 035301. [17] Liu J, Wang J, Chen H, et al. High visibility temporal ghost imaging with classical light [J]. Optics Communications, 2018, 410: 824-829. [18] Li H, Xiong J, Zeng G. Lensless ghost imaging for moving objects [J]. Optical Engineering, 2011, 50(12): 127005. [19] Zhang Cong, Gong Wenlin, Han Shensheng. Ghost imaging for moving targets and its application in remote sensing [J]. Chinese Journal of Lasers (中国激光), 2012, 39(12): 1214003 (in Chinese). [20] Li E, Bo Z, Chen M, et al. Ghost imaging of a moving target with an unknown constant speed [J]. Applied Physics Letters, 2014, 104(25): 251120. [21] Magaña-Loaiza O S, Howland G A, Malik M, et al. Compressive object tracking using entangled photons [J]. Applied Physics Letters, 2013, 102(23): 231104. [22] Xu Xiaohe, Liu Jiao, Zhao Shengmei. Compressive quantum correlated imaging scheme for moving object with changing background [J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition) (南京邮电大学学报:自然科学版), 2016, 36(2): 111-117 (in Chinese). [23] Wang Menghan, Zhang Zhaoqi, Zhao Shengmei. Performance comparison of different compressed sensing reconstruction algorithms in ghost imaging [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2017, 34(5): 523-529 (in Chinese).
|