[1] Weis S, Rivière R, Deléglise S, et al. Optomechanically induced transparency [J]. Science, 2010, 330: 1520-1523. [2] Dong C H, Fiore V, Kuzyk M C, et al. Optomehcanical dark mode [J]. Science, 2012, 338: 1609-1613. [3] Cleland A N, Roukes M L. A nanometre-scale mechancial electrometer [J]. Nature, 1998, 392: 160-162. [4] Bleszynski-Jayich A C, Shanks W E, Peaudecerf B, et al. Persistent currents in normal metal rings [J]. Science, 2009, 326: 272-275. [5] Jensen K, Kim K, Zettl A. An atomic-resolution nanomechanical mass sensor [J]. Nature Nanotechnology, 2008, 3(9): 533-537. [6] Dong C H, Wang Y D, Wang H L. Optomechanical interfaces for hybrid quantum networks [J]. National Science Review, 2015, 2(4): 510-519. [7] Regal C A, Lehnert K W. From cavity electromechanics to cavity optomechanics [J]. Journal of Physics: Conference Series, 2011, 264: 012025-012032. [8] Mahboob I, Mounaix M, Nishiguchi K, et al. A multimode electromechanical parametric resonator array [J]. Scientific Reports, 2014, 4: 4448-4456. [9] Yamaguchi H, Okamoto H, Mahboob I. Coherent control of micro/nanomechanical oscillation using parametric mode mixing [J]. Applied Physics Express, 2012, 5(1): 014001. [10] Aspelmeyer M, Kippenberg T J,Marquardt F. Cavity optomechanics [J]. Reviews of Modern Physics, 2014, 86(4): 1391-1452. [11] Liu Y C, Hu Y W, Wong C W, et al. Review of cavity optomechanical cooling [J]. Chinese Physics B, 2013, 22(11): 114213-114225. [12] Chan J, Alegre T P, Safavi-Naeini A H, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state [J]. Nature, 2011, 478: 89-92. [13] Peterson R W, Purdy T P, Kampel N S, et al. Laser cooling of a micromechanical membrane to the quantum backaction limit [J]. Physical Review Letters, 2016, 116: 063601-063606. [14] Xu H, Mason D, Jiang L, et al. Topological energy transfer in an optomechanical system with exceptional points [J]. Nature, 2016, 537: 80-83. [15] Fu H, Mao T H, Li Y, et al. Optically mediated spatial localization of collective modes of two coupled cantilevers for high sensitivity optomechanical transducer [J]. Applied Physics Letters, 2014, 105(1): 014108-014111 [16] Wang Y D, Zhang R, Yan X B, et al. Optimization of STIRAP-based state transfer under dissipation [J]. New Journal of Physics, 2017, 19(9): 093016-093026. [17] Faust T, Rieger J, Seitner M J, et al. Coherent control of a classical nanomechanical two-level system [J]. Nature Physics, 2013, 9(8): 485-488. [18] Weaver M J, Buters F, Luna F, et al. Coherent optomechanical state transfer between disparate mechanical resonators [J]. Nature Communications, 2017, 8(1): 824-830. [19] Fu H, Gong Z C, Mao T H, et al. Classical analog of Stückelberg interferometry in a two-coupled-cantilever–based optomechanical system [J]. Physical Review A, 2016, 94(4): 043855-043862. [20] Fu H, Gong Z C, Yang L P, et al. Coherent optomechanical switch for motion transduction based on dynamically localized mechanical modes [J]. Physical Review Applied, 2018, 9(5): 054024-054031 [21] Wang Y D,Clerk A A. Using dark modes for high-fidelity optomechanical quantum state transfer [J]. New Journal of Physics, 2012, 14(10): 105010-105047. [22] Okamoto H, Gourgout A, Chang C Y, et al. Coherent phonon manipulation in coupled mechanical resonators [J]. Nature Physics, 2013, 9(8): 480-484. [23] Huang P, Wang P F, Zhou J W, et al. Demonstration of motion transduction based on parametrically coupled mechanical resonators [J]. Physical Review Letters, 2013, 110: 227202-227206. [24] Huang P, Zhang L, Zhou J W, et al. Nonreciprocal radio frequency transduction in a parametric mechanical artificial lattice [J]. Physical Review Letters, 2016, 117: 017701-017705. [25] Seitner M J, Abdi M, Ridolfo A, et al. Parametric oscillation, frequency mixing, and injection locking of strongly coupled nanomechanical resonator modes [J]. Physical Review Letters, 2017, 118: 254301-254306. [26] Lecocq F, Clark J B, Simmonds R W, et al. Mechanically mediated microwave frequency conversion in the quantum regime [J]. Physical Review Letters, 2016, 116: 043601-043605. [27] Andrews R W, Peterson R W, Purdy T P, et al. Bidirectional and efficient conversion between microwave and optical light [J]. Nature Physics, 2014, 10(4): 321-326. [28] Barzanjeh S, Wulf M, Peruzzo M, et al. Mechanical on-chip microwave circulator [J]. Nature Communications, 2017, 8(1): 953-956. [29] Hafiz M A A, Kosuru L, Younis M I. Towards electromechanical computation: An alternative approach to realize complex logic circuits [J]. Journal of Applied Physics, 2016, 120(7): 074501-074510. [30] Habraken S J M, Stannigel K, Lukin M D, et al. Continuous mode cooling and phonon routers for phononic quantum networks [J]. New Journal of Physics, 2012, 14(11): 115004-115035. [31] Fang K J, Matheny M H, Luan X S, et al. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits [J]. Nature Photonics, 2016, 10(7): 489-496. |